JOURNAL OF SHANGHAI FISHERIES UNIVERSITY

Vol. 13, No. 3 Sep., 2004

文章编号:1004-7271(2004)03-0274-05

·研究简报·

氨和亚硝酸盐对凡纳滨对虾幼虾的毒性影响

Toxic effects of ammonia and nitrite on Penaeus vannamei juvenile

彭自然', 臧维玲', 高 杨', 江 敏', 徐桂荣', 丁福江'

(1. 上海水产大学生命科学与技术学院, 上海 200090

2. 上海申漕特种水产开发公司,上海 201507)

PENG Zi-ran¹, ZANG Wei-ling¹, GAO Yang¹, JIANG Min¹, XU Gui-rong², DING Fu-jiang²

(1. College of Aqua-life Science and Technology, Shanghai Fisheries University, Shanghai 200090, China;

2. Shencao Special Fisheries Development Limited Company of Jinshan District , Shanghai 201507 , China)

关键词 汎纳滨对虾 氨 亚硝酸盐 硝酸盐 毒性

Key words: Penaeus vannamei; ammonia; nitrite; nitrate; toxic effects

中图分类号 \$912 文献标识码:A

凡纳滨对虾(*Penaeus vannamei*),俗称南美白对虾,因其生长迅速、抗病力强、肉味鲜美和出肉率高而成为目前国内外广泛养殖的优良品种之一,在我国沿海地区养殖范围较广。本文研究了养殖水体中氨、亚硝酸盐对南美白对虾幼虾的毒性作用,同时探讨了较高浓度硝酸盐对南美白对虾生长的影响,研究结果将为养殖水质管理提供科学依据。

1 材料与方法

1.1 试验用水与试验用虾

试验于 2003 年 7-8 月在上海申漕特种水产开发公司育苗场进行。试验用水为取自杭州湾金山漕泾沿岸,并经沉淀、消毒、过滤处理的河口水,主要水质指标为:水温 T : 28.3 ± 2.6 °C ,比重 :1.0065 ,pH: 8.23 ,NH₃-N₁ 10.16 mg/L ,NO₂⁻-N 10.004 mg/L ,NO₃⁻-N 10.96mg/L。试验母液分别用分析纯 NH₄Cl、NaNO₂ 和 KNO₃ 配制 ,并用纳氏法、重氮偶氮法、锌镉还原-重氮偶氮法 $^{1.2}$ 则定其准确浓度。试液由母液经试验用水稀释而成。

氨、亚硝酸盐的毒性试验容器均为 1L 烧杯。亚急性试验用虾平均体长、体重分别为 5.21 ± 1.07 mm/尾、0.61 mg/尾 急性试验用虾平均体长、体重分别为 9.92 ± 1.03 mm/尾、10.66 mg/尾 ,皆为公司自行培育。硝酸盐对生长影响试验容器为 $68\text{cm}\times51\text{cm}\times38\text{cm}$ 蓝色塑料箱。由于集约化虾类养殖水体中硝酸盐随养殖时间延长而逐渐积累 ,大规格幼虾养殖水体中硝酸盐浓度较大 ,因此试验设有低浓度组与高浓度组 ,试验虾分别为 $3.6\sim3.9\text{cm}$ 与 6.8cm 两种规格的幼虾。

1.2 试验管理

急性毒性试验用虾试验期间及试验前 1 天均停食:亚急性毒性试验期间每天投喂人工配合饲料 4

(0%)

次。氨、亚硝酸盐毒性试验每日换水 1/2 消酸盐对生长影响试验隔日换水 1/3。各试验均连续充气 ,每 日排污,定时观察试验虾活力、死亡数与运动状况等。

1.3 试验方法

根据资料3-51和预试验结果按等对数间距设置急性毒性试验试液浓度,并设对照组和平行组。每 组放幼虾 10 尾 根据 24h, 48h, 72h, 96h 校正死亡率 [^{12]} 以 Karber 法 ^{6]}计算半致死浓度(LC₅₀) 再按下式 计算安全浓度 Se^[78]:

$$Sc = 0.1 \times 96 h LC_{50}$$

根据资料8河和生产经验设置亚急性毒性试验试液浓度,并设对照组和平行组。每组放入幼虾8尾, 分别在试验前和试验第 7、16 天测量体长、体重 ,计算体长增长率($\Delta L \%$) 体重增长率($\Delta W \%$ $\}$ 3]。

非离子氨(NH3-Nm)浓度由总氨(NH3-Nm)浓度计算求得9]。

试验结果 2

氨、亚硝酸盐对南美白对虾幼虾的急性致毒结果分列于表 1、表 2 其对幼虾的半致死浓度和安全浓 度见表 3。

表 1 氨对南美白对虾幼虾急性致毒死亡率的影响

Tab.1 The acute toxic effects of ammonia on the mortality rate of P. vannamei juvenile								
NH ₃ -N _t /NH ₃ -N _m	浓度(mg/L)	5.0/0.34	6.3/0.43	7.9/0.54	10.0/0.69	12.6/0.86	15.9/1.09	20.0/1.37
校正死亡率	24h	0	5.3	16.7	36.8	47.4	47.4	57.9
	48h	0	27.8	33.3	55.6	77.8	94.4	100
1又止76 上平	72h	0	33.3	46.7	60.0	93.3	100	100
	96h	0	38.5	53.8	61.5	100	100	100

表 2 亚硝酸盐对南美白对虾幼虾急性致毒死亡率的影响 Tab 2. The courte toxic effects of nitrite on the montality rate of D. yannamai invenile

	1ab.2 The	acute toxic en	ccis of intific	on the mora	anty rate of I	. vannamei	Juveinie	(70)
NO ₂ N 浓	度(mg/L)	14.0	18.3	24.0	31.4	41.1	53.8	70.5
	24h	5.3	15.8	15.8	21.1	21.1	31.6	31.6
校正死亡率	48h	11.1	22.2	33.3	50.0	61.1	66.7	66.7
	72h	13.3	40.0	53.3	60.0	73.3	80.0	93.3
	96h	46.2	61.5	69.2	76.9	84.6	100	100

表 3 氨、亚硝酸盐对南美白对虾幼虾的半致死浓度 LC_{50} 和安全浓度 Sc

Tab.3	The LC ₅₀ and Sc	values of ammonia	\mathbf{a} and nitrite to P .	<i>vannamei</i> juvenile	(mg/L)
-------	-----------------------------	-------------------	-----------------------------------	--------------------------	----------

		L	C ₅₀		e .
_	24h	48h	72h	96h	Se
NH ₃ - N _t	13.8	9.14	8.24	7.87	0.787
$NH_3 - N_m$	0.946	0.627	0.565	0.540	0.054
NO_2 – N	55.0	34.7	26.3	19.1	1.9

试验发现 氨最高浓度组试验虾进入烧杯仅 10min 即沿杯壁或呈圆形轨迹剧烈游动 2h 后沉入杯 底 活力减弱 仅附肢轻微颤动 体色变白 6h 后即有 40% 试验虾死亡。亚硝酸盐最高浓度组试验虾放 入 3h 后才出现中毒症状 浮于液面 身体弯曲并呈螺旋状仰泳 6h 后仰卧杯底 少动 刺激后附肢颤动; 18h 后 25%的虾死亡。较低浓度组试验虾经较长时间中毒作用后也出现上述症状,且浓度越高、时间越 长 具有中毒症状虾的比例越高。

南美白对虾幼虾在一定浓度氨、亚硝酸盐试液中饲养 14d 后的体长(L_{14})、体重(W_{14})和体长增长率

(ΔL_{14})、体重增长率(ΔW_{14})、存活率分列于表 4、表 5。 以对照组增长率为标准,计算各组试验虾相对体长、体重增长率,绘制浓度 – 效应关系图(图 1、图 2)。 将试验数据进行回归处理,可得试验浓度范围内非离子氨氮、亚硝酸盐氮浓度与相对体长增长率、相对体重增长率的相关方程:

非离子氨氮浓度 – 体长增长率回归方程 : $y=125.4e^{-9.199x}$ r=0.9776 非离子氨氮浓度 – 体重增长率回归方程 : $y=205.8e^{-9.804x}$ r=0.9693 亚硝酸盐氮浓度 – 体长增长率回归方程 : $y=139.3e^{-0.1415x}$ r=0.9942 亚硝酸盐氮浓度 – 体重增长率回归方程 : $y=197.6e^{-0.3008x}$ r=0.9935

Tab.4 The effects of ammonia on the growth and survival rates of P. vannamei juvenile

组号	对照	1	2	3	4	5	6
NH ₃ - N _t /NH ₃ - N _m 浓度(mg /L)	0.16/0.011	0.50/0.034	0.55/0.038	0.60/0.041	0.65/0.000	0.70/0.048	0.75/0.051
L ₁₄ (mm/尾)	11.20 ± 1.16	10.71 ± 1.24	10.57 ± 1.42	10.27 ± 1.24	10.12 ± 0.79	10.05 ± 1.00	9.96 ± 1.42
ΔL_1 (%)	115	106	103	97.1	94.2	92.9	91.2
W ₁₄ (mg/尾)	13.40	12.61	11.47	9.90	9.52	8.80	8.74
ΔW_{14} %)	2097	1967	1780	1523	1461	1343	1333
存活率(%)	85	75	75	70	70	60	60

表 5 亚硝酸盐对南美白对虾生长和存活率的影响

Tab.5 The effects of nitrite on the growth and survival rates of P. vannamei juvenile

组号	对照	1	2	3	4	5	6
NO ₂ N 浓度(mg/L)	0.004	2.5	3.0	3.5	4.0	4.5	5.0
L_{14} (mm/尾)	11.20 ± 1.16	11.00 ± 1.13	10.73 ± 1.64	10.29 ± 1.21	9.96 ± 1.61	9.71 ± 0.68	9.25 ± 1.27
ΔL_1 (%)	115	111	106	97.5	91.2	86.4	77.5
W14(mg/尾)	13.40	12.85	10.92	8.96	8.31	7.00	6.39
$\Delta W_1 (\%)$	2097	2007	1690	1369	1262	1048	948
存活率%	85	75	70	70	65	65	60

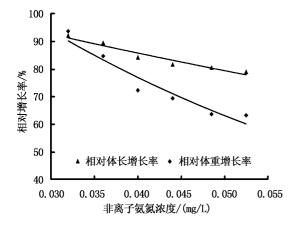


图 1 氨对南美白对虾幼虾相对生长率的影响

Fig. 1 The effect of ammonia on the relative growth rate of *P. vannamei* juvenile

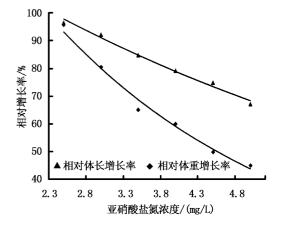


图 2 亚硝酸盐对南美白对虾幼虾相对生长率的影响

Fig. 2 The effect of nitrite on the relative growth rate of *P. vannamei* juvenile

在较高浓度硝酸盐试液中,南美白对虾的初始体长、体重(L_0 、 W_0),饲养 7 天、16 天后的体长、体重

 $(L_7, L_{16}, W_7, W_{16})$ 及体长增长率、体重增长率 $(\Delta L_7, \Delta L_{16}, \Delta W_7, \Delta W_{16})$ 列于表 6。

表 6 硝酸盐对南美白对虾生长的影响

Tab.6 The effects of nitrate on the growth of	Р.	P. vanname	ei
---	----	------------	----

组 号	对照	1	2	3	4	5	6	7
NO ₃ - – N 浓度 (mg/L)	0.96	30	60	90	120	150	400	600
L_0 cm)	4.3 ± 0.6	3.9 ± 0.3	3.8 ± 0.3	3.9 ± 0.4	3.6 ± 0.4	3.6 ± 0.2	6.9 ± 1.0	6.8 ± 0.3
L ₁ (cm)	5.1 ± 0.8	4.8 ± 0.4	4.6 ± 0.3	4.9 ± 0.5	4.3 ± 0.4	4.3 ± 0.3	7.5 ± 0.5	7.3 ± 0.2
ΔL_{π} (%)	19.0	20.6	22.1	24.3	21.0	18.9	8.7	7.5
L_{16} cm)	6.1 ± 0.8	5.4 ± 0.5	5.2 ± 0.4	5.5 ± 0.6	4.9 ± 0.5	5.0 ± 0.3	_	-
ΔL_{16} (%)	41.0	36.8	38.3	41.4	38.4	37.8	_	-
$W_0(g)$	1.24	0.71	0.86	0.97	0.74	0.76	4.37	3.97
W ₁ (g)	1.82	1.32	1.42	1.54	1.03	1.03	5.72	4.88
ΔW_{\uparrow} %)	46.8	85.9	65.1	58.8	39.2	35.5	30.9	22.9
$W_{16}(g)$	2.88	2.12	2.25	2.42	1.74	1.66	-	-
ΔW_{16} (%)	132	199	162	149	135	118	_	-

3. 讨论

3.1 氨、亚硝酸盐对南美白对虾幼虾的急性毒性效应

由表 1 可见 随着氨浓度与中毒时间的增加,试验虾校正死亡率逐渐增高,总氨氮浓度为 15.9 与 $12.6 \,\mathrm{mg/L}$ 时,受试虾分别经 $72 \,\mathrm{h}$ 与 $96 \,\mathrm{h}$ 全部死亡。 $5.0 \,\mathrm{mg/L}$ 浓度组的试验虾在 $96 \,\mathrm{h}$ 内仍未死亡,活动状况与对照组基本相同。可见 $96 \,\mathrm{h}$ 内,低于此浓度的氨尚未表现出对幼虾的急性致死作用。同时, $24 \,\mathrm{h}$ 内各浓度组试验虾死亡率远低于其余中毒时段,仅 $20.0 \,\mathrm{mg/L}$ 浓度组高于 50%。表 3 也表明, $24 \,\mathrm{h}$ 至 $96 \,\mathrm{h}$ 内,随着中毒时间的延长,氨对幼虾的 100 人。由此可知,随中毒时间的延长,试验虾体质明显下降,对氨的耐毒能力也随之减弱,故死亡率随时间延长明显增加。

亚硝酸盐对幼虾急性致毒死亡率的影响规律与氨基本相似(表 2)。但试验浓度范围内 ,初始 24h 有三对浓度(18.3 与 24.0、31.4 与 41.1、53.8 与 $70.5 \,\mathrm{mg/L}$)试液中试验虾死亡率分别相同 ,说明试液浓度间隔过小 ,不足以在短时间内导致死亡率的明显差异。比较表 1 与表 2 可见 ,浓度相近的试验组中 ,亚硝酸盐组幼虾死亡率远低于氨组 ,而表 3 中亚硝酸盐对幼虾的 LC_{50} 与 S_{c} 值明显高于同时段氨的相应值 ,总氨氮(非离子氨氮) 亚硝酸盐氮对幼虾的安全浓度分别为 0.787(0.054) $\mathrm{mg/L}$ 、1.91 $\mathrm{mg/L}$,这表明亚硝酸盐对幼虾的毒性低于氨 ,故养殖生产中严格控制氨的浓度更为重要。

臧维玲 15 8 1 、周光正 14 、姚庆祯 71 、孙国铭 10 等就非离子氨、亚硝酸盐对不同发育期南美白对虾、斑节对虾、中国对虾的急性毒性作用与安全浓度进行了研究。比较可知,在相近条件下,南美白对虾幼虾的耐毒能力随发育成长而逐渐增强,氨和亚硝酸盐对 Z_1 、 M_1 、L=0.52cm、L=5cm 幼虾的 S_c 分别为0.86、0.74、<math>0.79、2.667 mg/L 和 0.56、0.77、1.91、<math>5.551 mg/L。可见,在同一发育阶段,氨的 S_c 也远比亚硝酸盐低,其毒性大于亚硝酸盐,其它种类虾也有类似情况。

3.2 氨、亚硝酸盐对南美白对虾的亚急性毒性作用

由表 4-5 和图 1-2 可见,试验浓度下氨、亚硝酸盐都对试验虾的生长产生抑制,体长、体重增长率和存活率皆低于对照组,且抑制作用随氨、亚硝酸盐浓度的增加而增强,这是幼虾受到亚急性毒害的表现。由回归方程计算可得,幼虾相对体长增长率为 80% 时,总氨氮(非离子氨氮)浓度为 0.714(0.049) mg/L, 亚硝酸盐氮浓度为 3.92 mg/L;幼虾相对体重增长率达 80% 时,总氨氮(非离子氨氮)浓度为 0.661(0.045) mg/L,亚硝酸盐氮浓度为 3.01 mg/L。可见 若使虾的生长受到相同程度的抑制,所需氨浓度远

低于亚硝酸盐,可见氨对幼虾的亚急性毒性大于亚硝酸盐,这与本研究中急性致毒试验结果一致。

3.3 硝酸盐对南美白对虾生长的影响

由表 6 可见 ,硝酸盐在 $30 \sim 150 \text{mg/L}$ 浓度范围内,试验虾的体长增长率相差不大,7d 和 16d 体长增长率在(21.6 ± 5.4)%和(29.1 ± 4.6)%范围内波动。硝酸盐浓度大于 400 mg/L 时,试验虾体长增长率剧减至 9% 以下,这除硝酸盐影响外,可能也与试验虾初始规格较大有关。进一步试验表明,硝酸盐浓度大于 600 mg/L 时,试验虾在第 6 天即出现死亡;1000 mg/L 浓度组试验虾在第 8 天死亡率达 50%,说明高浓度硝酸盐已显著影响其存活。 150 mg/L 浓度组中试验虾体重增长率显著低于对照组,可见,150 mg/L 以上的硝酸盐已对幼虾体重增长产生了抑制。

通常认为、硝酸盐在一定浓度范围内对水产动物无毒害、渔业水质标准等国标也未对其进行限制。本研究发现、较高浓度硝酸盐(> 150mg/L)将对南美白对虾的生长不利,高浓度硝酸盐(> 600mg/L)即能引起死亡。室内循环水集约化养殖中,硝酸盐将随养殖时间增加而积累,浓度逐渐增大。因而高浓度硝酸盐对虾类的毒害作用不容忽视,需采取有效措施加以调控。

参考文献:

- [1] 中华人民共和国国家标准 GB11607 89, 渔业水质标准 S].
- [2] 陈桂荣.水化学试验指导书[M].北京:中国农业出版社,1996.83.126-143.
- [3] 戴习林 减维玲 杨鸿山, 等. Cu²+、Zn²+、Cd²+对罗氏沼虾幼虾的毒性作用[J]. 上海水产大学学报 2001, 10(4) 298 302.
- [4] 周光正. 氨和亚硝酸盐对对虾幼体的毒性 J]. 海洋湖沼通报 ,1991 (2) 95 98.
- [5] Zang W L ,Xu X C , Dai X L , et al . Toxic effects of Zn²⁺ , Cu²⁺ , Cd²⁺ and NH₃ on Chinese prawr[J]. Chinese J Oceanal Limol , 1993 ,11(3): 254 259.
- [6] 郑微云 翁恩琪.环境毒理学概论[M].厦门:厦门大学出版社 ,1993.60.
- [8] 臧维玲 江 敏 涨健达 筹.亚硝酸盐和氨对罗氏沼虾幼体的毒性 J].上海水产大学学报 ,1996 5(1):15-22.
- [9] 中华人民共和国国家标准 GB3097 1997 ,海水水质标准 S].
- [10] 孙国铭 汤建华 仲霞铭 等. 氨氮和亚硝酸氮对南美白对虾的毒性研究 J]. 水产养殖 2002 (1) 22 24.