JOURNAL OF SHANGHAI FISHERIES UNIVERSITY

June , 2004

文章编号:1004-7271(2004)02-0189-04

·研究简报·

PLC 与上位机的串行通信实现

The implementation of the serial communication between PLC and PC

周雪辉,朱永兴,吴燕翔

(上海水产大学海洋学院,上海 200090)

ZHOU Xue-hui, ZHU Yong-xing, WU Yan-xiang

(Ocean College of Shanghai Fisheries University, Shanghai 200090, China)

关键词:串行通信 组态软件 组态王 5.1 河编程控制器;VB6.0

Key words 'serial communication'; configuration software; Kingview5.1; programmable logic controller; VB6.0

中图分类号:TP311 文献标识码:A

可编程序控制器(Programmable logic controller ,PLC)是工业控制计算机家族中的一员 随着工业自动 化程度的日益提高 ,PLC 以其应用简便、稳定可靠、控制功能强大、抗干扰能力强等特点已经得到了广泛 的应用 ,但它也有自身的一些缺点 ,即数据的计算处理与管理能力较弱 ,特别是不能提供给用户良好的 人机界面。将计算机与 PLC 结合起来使用 ,可以充分利用计算机强大的人机接口功能、丰富的应用软件 ,达到使二者优势互补的目的。组成这样的分布式控制系统 ,可以有效地解决上述问题。在这里 ,PLC 完成对系统的底层控制 ,即直接控制执行机构 ,上位计算机则完成数据处理、信息管理等复杂的控制管理任务。本文以 OMRON 可编程序控制器为例重点讨论 PLC 与上位机串行通信实现的方法。通常有两种方法来实现上位机对可编程序控制器的监控 :一种是采用现有的组态软件 ,另一种是利用高级语言实现上位机与 PLC 的通信 ,如 VB ,VC 等。

1 通信网络的硬件组成及其通信协议

HostLink 协议是欧姆龙的专有协议 ,它支持与欧姆龙 PLC 的通信 ,该协议采用串行通信 ,占用计算机中的串行口[1]。通信中 ,命令由上位机发向 PLC ,PLC 做出反应 ,发送方及接受方所有的通信都是由上位机驱动 ,通信协议采用 FCS(Frame Check Sequence)纠错。要实现上位机与 PLC 的数据交换 ,以下几点必须得到保证 (1)上位机与 PLC 的波特率一致 (2)数据格式一致 (3)上位机必须依照 PLC 的通信协议来编写通信协议。硬件连接以 OMRON 公司的 CPM1A 为例 ,其基于 1:1 的连接方式如图 1 所示。CPM1A 本身没有串行通信端口 ,需要借助 RS232C 通信适配器 CPM1 – CIF01 模块才能和上位机的串行口连接起来 ,此时应将模块上的开关拨向 HOST 端。PLC 与上位机进行通信时 ,PLC 的通信参数可以按照以下的推荐值设置 ,波特率 9600 ,数据位长度 7 ,停止位长度 2 ,奇偶校验位 :偶校验。

2 基于组态王 5.1 的 PLC 与上位机的通信

2.1 组态王 5.1 软件的简介

组态王 5.1 是运行在 Windows98/NT4.0 上的组态软件 ,内含工程浏览器 TOUCHEXPLORER 和画面运行系统 TOUCHVEW 两部分。工程浏览器是组态王的核心部分和管理开发系统 ,画面运行系统是组态王软件实时运行环境 ^{2]}。组态王为开发者提供了丰富的图库及图库开发工具。用户将所设计好的画面进行数据连接 ,就可以将对象与系统变量对应起来。组态王还内置了大量的设备驱动程序 ,一般不需要再单独安装设备驱动程序了。它内建了很多系统函数、控制函数、配方管理函数、命令语言函数 ,

可以简单方便地完成画面的动态显示,创建配方,生成数据报告等。

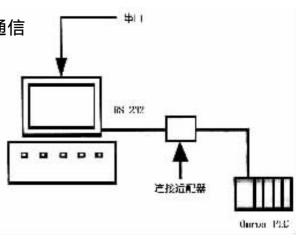


图 1 系统构成

Fig. 1 System Configuration

2.2 组态王 5.1 与 PLC 的通讯

组态王软件系统与最终工程人员使用的具体的 PLC 或现场部件无关 ,对于不同的硬件设备 ,只需要为组态王配置相应的通信驱动程序即可。工程人员可以把每一台下位机看作一种设备 ,而不必关心具体的通讯协议 ,只需要在组态王的设备库中选择设备的类型 ,然后按照'设备配置向导'的提示一步步完成安装即可。

组态王的设备管理结构列出已配置的与组态王通讯的各种 I/O 设备名 ,每个设备名实际上是具体设备的逻辑名称 ,每个逻辑设备名对应一个相应的驱动程序 ²]。工程人员只要按照配置向导的提示进行相应的参数设置 ,选择 I/O 设备的生产厂家、实际设备名称、通讯方式 ,指定设备的逻辑名称和通讯地址 组态王则会自动完成驱动程序的启动和通信 ,不再需要人工参与了。

OMRON 系列 PLC 的编程口(串行口)与组态王通信,都可以使用 hostlink 协议方式来实现。在组态王的设备管理器中双击新建,然后依次为 PLC > Omron > 串行 > 填写逻辑名称 > 选择串口 > 指定设备地址,例如:PLC > Omron > 串行 > omron > com1 > 1。这些主要工作结束后,就完成了 PLC 的设备安装,此时还需要在组态王中定义串口的参数,组态王的参数设置成和 PLC 中的一样即可(见前文)。需要注意的是:PLC 初始状态要设定为 Monitor (监控)状态,只有在 Monitor 状态下才能往 PLC 写入数据。

以上工作结束后 就可以实现组态王与 PLC 的通信。

3 基于高级语言 VB6.0 的串行通信

3.1 通信的命令格式

通信的一些基本参数都要在 PLC 的 DM 区中设定 本例中 PLC 选择标准的通信参数。通讯方式按主从关系可以分两种:一是上位机为主动方,发出命令启动通信,PLC 为被动方,接受上位机的命令。另一种是由 PLC 为主动方,发出启动命令,本文采用的是第一种方式。从计算机发送到 PLC 的数据块称为命令帧,从 PLC 向上位机发的数据块称为响应帧^[3]。

上位机发出的命令帧格式如下:

@	×	×	×	×		×	×	*	CR
ħ	机号 NO.		识别码		正文	FCS		结束码	

PLC 回送给上位机的响应帧格式如下:

@	×	×	×	×	×	×		×	×	*	CR
朾	机号 NO.		识别码		响应码		正文	FCS		结束码	

在命令/响应格式中,必须要以@开始。"机号 NO."是上位机识别所连 PLC 的节点号,该参数在 PLC 的(DM6653)中设定[1]。识别码为一个命令代码,用来标明读写的区,例如读 DM 区时为 RD ,写 DM 区时则是 WD。FCS 是帧校验和,用来检查是否发生错误。而*和 CR 表示帧的结束,在响应格式中结束代码标明返回命令的完成状态,如 100 表示是正常结束。一个帧最多由 131 个 ASCII 码字符组成,如果超过,则必须将数据分成若干帧,第一帧和中间帧以分界符(CR)来代替结束码(* CR)。

3.2 VB6.0 通信控件 MSComm 的使用

在 VB6.0 平台上 ,通过对串行通信控件 MSComm 的简单配置 ,就可以完成串行口的读写操作 ,从而实现上位机与 PLC 的通信。

① MSComm 的常用属性

Settings 通信设置 本文将 PLC(CPM1A)设置为标准的通信参数(见前文) ,所以应将该属性设置为: "9600 ,E 7.2"。

CommPort:用于指定串行通信端口号。

InBuffersize:确定输入缓冲区的大小。 OutBuffersize:确定输出缓冲区的大小。

InputLen:指定每次从输入缓冲器读出的字符数。

② 运行时常用的属性

PortOpen:设置和读取串行口状态。

OutPut:向串行口写数据。

InPut:读串行口数据。

InBufferCount:确定输入缓冲区内的字符数。

其它属性采用默认值即可。

3.3 通信实例

依次点击 Project > Components > Control > Microsoft Common Control6.0 即可在 VB6.0 控件栏里发现 Mscomm 控件。

初始化串行口

Private Sub Form-Load)

Mscomm1.Commport = 1 '使用 COM1

Mscomm1. Setting = '9600 E 7 2" '波特率 9600、7 位数据位、2 位停止位、偶校验

Mscomm1. Inputlen = 0 将接收缓冲区的数据全部读取

End Sub

向 PLC 写数据

Private Sub SendMesg-Click()

Dim SendMesg1 As String

Dim Tp As String

Tp = Tp + Fcs(Tp) + ** + chr \$(13)

```
Mscomm1 \cdot Output = Tp
                                    "写 DM 区
SendMesg1 = "@00WD00010002"
Mscomm1. Output = SendMesg + Fcs(SendMesg) + "* "+ chr $(13)
End Sub
读 PLC 的数据
Private Sub RecMesg-Click()
Dim Cmp As String
Dim Rec As String
Cmp = "@00RD00010002"
                             '读 DM0001、DM0002
Mscomm1. Output = Cmp + FCS( Cmp )+ "*" + Chr $(13)
For I = 1 to 1000
I = I + 1
Next I
           等待 PLC 响应
Rec = Mscomm1.Input
End Sub
校验码 FCS 的计算程序
Private Function Fcs (Frame As Sting) As String
Dim TJ As String
Fcs = 0
For I = 1 to len (frame $ )
TJ  = Mid  (Frame  ,I,1) 
Fcs = Fcs Xor Ard(tj $)
Next I
Fcs $ = hex $ (Fcs) 
If len( Fcs \$ )= 1 then Fcs \$ = "0" &Fcs \$
End if
End Function
```

4 结束语

随着 PLC 应用的日益广泛 基于 PC 和 PLC 的分布式控制系统越来越受到各方面的重视 ,拥有着很好发展前景。专用工业组态软件适用于控制要求较为复杂的大中型系统 ,工程技术人员可以依靠其强大的功能 ,建立起符合控制要求的控制画面。对于小型分布式系统的设计而言 ,减少投资往往是重要的出发点 ,而由高级语言编写的通信软件正好适用于一些小规模的、比较简单的控制系统 ,这样不但可以节约投资 ,而且在实际运行中表明 ,系统可靠 ,通信简单 对小系统来说是一种较为理想的选择。在实际工程中 ,应当根据控制任务的特点及现场实际状况来选择具体的控制方案。

参考文献:

- [1] OMRON 公司. OMRON 编程手册[Z]. 102-163.
- [2] 北京亚控自动化软件科技公司. 组态王 5.1 使用手册 Z] 2002. 23 39.
- [3] 范逸之, Visual Basic 与 RS232 串行通信控制 M], 北京:中国青年出版社 2002.

JOURNAL OF SHANGHAI FISHERIES UNIVERSITY

Vol.13, No.2, 2004

CONTENTS

Prelimiary study on the genetic relationship between white spot pike Esox lucius and black spot pike
Esox reicherti LI Si-fa , QIAO De-liang , LING Qu-fei , et al .(97)
Genotype-environment interaction analysis from the body color and growth character in Oujiang color common
carp , Cyprinus carpio var. color
Construction of genomic DNA library of the mirror carp
Comparative study on DNA contents of five cultured fishes of Acipenseridae and Huso
Preliminary study on the pathogen and histopathology of haemorrhagic blood poisoning in Scortum bacoo
Effects of chitosan as a feed additive on lysozyme activity and phaogocytic activity of leucocytes of
allogynogenetic silver crucian carp
Effects of temperature and body size on oxygen consumption rate of Meretrix meretrix
FENG Jian-bin , WANG Mei-zhen ,CHEN Han-chun ,et al .(126
Artificial breeding of juveniles of <i>Mactra antiquata</i>
Preliminary study on the trend of CPPS fishery management and its effects on the development of
the Chilean jack mackerel fishery of China
Analysis of sustainable development of marine capture fisheries in Zhejiang Province YANG Jian-y(140)
Isolation of collagen from freshwater fish skin
Silver carp fish protein prepared by enzyme
ROUNDUP
Advances in sex determination of shrimps (prawns) and crabs
LOU Yun-dong , LIU Yan-hong , QIU Gao-feng 157
Researches, problems and countermeasures of marine cage fish culture in China mainland
Applications of computational fluid dynamics in food industy
RESEARCH NOTES
Preliminary study on available utilization of light on squid jigging vessel
Screening of the cholesterol-reducing lactic acid bacteria
Purification and some properties of chitosanase from <i>Pseudomonas</i>
The implementation of the serial communication between PLC and PC
ZHOU Xue-hui , ZHU Yong-xing , WU Yan-xiang 189