摘要
为了探究中成鱼阶段线鳢饲料中鱼粉及鱼油适宜替代量,本实验首先以宠物级鸡肉粉为蛋白源,分别替代0%、17%、33%、50%、67%和83%的65鱼粉,制备6组等氮等脂的实验饲料,饲养中成鱼阶段线鳢(初始体质量约150 g)8周。随后,在获得最适鱼粉替代水平的基础上,以大豆磷脂油为脂肪源,分别替代0%、13%、25%、38%、50%和63%的海水鱼油,制备6组等氮等脂的实验饲料,饲养中成鱼阶段线鳢(初始体质量约150 g)8周。结果显示,鸡肉粉替代鱼粉对线鳢的生长性能、形体指标、营养素表观消化率和体组成均无显著性影响(P>0.05)。大豆磷脂油替代海水鱼油对线鳢生长性能、形体指标和体组成均无显著性影响(P>0.05);饲料的干物质、粗蛋白表观消化率亦无显著性变化(P>0.05),但海水鱼油替代比例达到或超过38%时,粗脂肪表观消化率显著下降(约2%)(P<0.05)。以上研究表明,以生长、饲料利用和鱼体组成等作为评判标准,中成鱼阶段线鳢饲料中,鸡肉粉可替代65鱼粉比例达83%、大豆磷脂油可替代海水鱼油比例达63%。本研究填补了中成鱼阶段线鳢鱼粉及鱼油替代研究空白,可为商业饲料配方优化和成本节约提供重要参考价值。
鱼粉、鱼油富含必需氨基酸、脂肪酸,利于被水产动物消化吸收且含有多种促生长因子,历来是水产饲料中优质的蛋白源和脂肪
鸡肉粉是鸡肉加工过程中余下的碎肉、内脏和鸡架等,经过蒸煮、灭菌、脱脂、粉碎、干燥而成的一种肉制品加工副产物,具有蛋白质含量高、氨基酸平衡、适口性好、价格便宜等优点,是一种潜在的鱼粉替代
大豆卵磷脂是从大豆中提取并经过特定加工得到的一种脂质,具有价格稳定,资源可持续性的优
线鳢(Channa striata)是一种广泛养殖于东南亚国家的凶猛肉食性鱼类,具有很高的经济价值和药用价
鱼粉替代实验:实验配方以秘鲁鱼粉、65海水鱼粉、鸡肉粉、豆粕为蛋白源,以磷脂油和粗海水鱼油为脂肪源,以面粉为淀粉源,以美国宠物级鸡肉粉为蛋白源分别替代0%、17%、33%、50%、67%和83%的65海水鱼粉,配平赖氨酸、蛋氨酸和海水鱼油含量,制备等氮等脂的6组实验饲料,并分别命名为FM、PM04、PM08、PM12、PM16和PM20(
项目Items | 实验饲料 Diet | |||||
---|---|---|---|---|---|---|
FM | PM04 | PM08 | PM12 | PM16 | PM20 | |
原料 (干重基础) Ingredients (dry matter basis) 秘鲁鱼粉 Peruvian fishmea | 25 | 25 | 25 | 25 | 25 | 25 |
65海水鱼粉 Fishmeal 6 | 24 | 20 | 16 | 12 | 8 | 4 |
鸡肉粉 Poultry mea | 0 | 4 | 8 | 12 | 16 | 20 |
豆粕 Soybean mea | 19 | 19 | 19 | 19 | 19 | 19 |
面粉 Wheat flour | 10 | 10 | 10 | 10 | 10 | 10 |
微晶纤维素 Microcrystalline cellulose | 5.90 | 6.16 | 6.44 | 6.72 | 6.98 | 7.26 |
海水鱼油 Fish oil | 3.0 | 3.3 | 3.6 | 3.9 | 4.2 | 4.5 |
大豆磷脂油 Soy lecithin | 8.0 | 7.4 | 6.8 | 6.2 | 5.6 | 5.0 |
赖氨酸 Lysin | 0 | 0.02 | 0.03 | 0.04 | 0.06 | 0.07 |
蛋氨酸 Methionin | 0 | 0.02 | 0.03 | 0.04 | 0.06 | 0.07 |
三氧化二钇 Yttrium oxide | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
预混料 Premi | 5 | 5 | 5 | 5 | 5 | 5 |
化学组成分析 (湿重基础, %) Chemical analysis (wet weight basis, %) | ||||||
干物质 Dry matter | 93.5 | 93.7 | 93.8 | 94.0 | 94.1 | 94.2 |
粗蛋白 Crude protein | 42.4 | 42.5 | 42.5 | 42.6 | 42.3 | 42.5 |
粗脂肪 Crude lipid | 15.2 | 15.3 | 15.1 | 15.3 | 15.4 | 15.3 |
灰分 Ash | 9.7 | 9.5 | 9.2 | 8.8 | 8.5 | 8.3 |
必需氨基酸 Essential amino acids | ||||||
精氨酸 Arginine | 2.70 | 2.73 | 2.80 | 2.86 | 2.91 | 2.96 |
组氨酸 Histidine | 1.18 | 1.16 | 1.11 | 1.08 | 1.05 | 1.02 |
异亮氨酸 Isoleucine | 1.89 | 1.86 | 1.85 | 1.85 | 1.83 | 1.83 |
亮氨酸 Leucine | 3.31 | 3.27 | 3.23 | 3.20 | 3.17 | 3.14 |
赖氨酸 Lysine | 2.78 | 2.78 | 2.78 | 2.77 | 2.80 | 2.77 |
蛋氨酸 Methionine | 1.02 | 1.04 | 1.02 | 1.03 | 1.04 | 1.04 |
苯丙氨酸 Phenylalanine | 2.01 | 1.98 | 1.96 | 1.91 | 1.89 | 1.85 |
苏氨酸 Threonine | 1.69 | 1.71 | 1.69 | 1.69 | 1.72 | 1.71 |
缬氨酸 Valine | 2.20 | 2.19 | 2.17 | 2.16 | 2.13 | 2.11 |
注: a秘鲁鱼粉:粗蛋白68.3%,粗脂肪8.6%
Notes: a Peruvian fishmeal: crude protein 68.3%, crude lipid 8.6%;
鱼油替代实验:实验配方以鱼粉、鸡肉粉、豆粕为蛋白源,以磷脂油和粗海水鱼油为脂肪源,以面粉为淀粉源,以大豆磷脂油替代海水粗鱼油,制备等蛋等脂的6组实验饲料,并分别命名为FO、SL13、SL25、L38、L50和L63(
项目Items | 实验饲料 Diet | |||||
---|---|---|---|---|---|---|
FO | SL13 | SL25 | SL38 | SL50 | SL63 | |
原料 (干重基础)Ingredients (dry matter basis) | ||||||
秘鲁鱼粉 Peruvian fishmea | 25 | 25 | 25 | 25 | 25 | 25 |
65海水鱼粉 Fishmeal 6 | 4 | 4 | 4 | 4 | 4 | 4 |
鸡肉粉 Poultry mea | 20 | 20 | 20 | 20 | 20 | 20 |
豆粕 Soybean mea | 19 | 19 | 19 | 19 | 19 | 19 |
面粉 Wheat flour | 10 | 10 | 10 | 10 | 10 | 10 |
微晶纤维Microcrystalline cellulose | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 |
海水鱼油 Fish oil | 8 | 7 | 6 | 5 | 4 | 3 |
大豆磷脂油 Soy lecithin | 2 | 3 | 4 | 5 | 6 | 7 |
三氧化二钇 Yttrium oxide | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
预混料 Premi | 5 | 5 | 5 | 5 | 5 | 5 |
化学组成分析 (湿重基础) Chemical analysis (wet weight basis) | ||||||
干物质 Dry matter | 94.1 | 94.4 | 94.3 | 93.8 | 94.7 | 94.6 |
粗蛋白 Crude protein | 43.0 | 42.9 | 43.1 | 43.1 | 43.0 | 43.0 |
粗脂肪 Crude lipid | 15.7 | 15.6 | 15.5 | 15.6 | 15.5 | 15.7 |
灰分 Ash | 8.1 | 8.2 | 8.2 | 8.1 | 8.2 | 8.2 |
注: a秘鲁鱼粉:粗蛋白68.3%,粗脂肪8.6%
Notes: a Peruvian fishmeal: crude protein 68.3%, crude lipid 8.6%;
所有原料经超微粉碎之后过80目筛。按照实验配方表,除鱼油和大豆卵磷脂之外,其他原料按逐级放大原则,在混合机中混合均匀。然后将大豆卵磷脂溶解到鱼油中,经加热后喷涂到混合机中与物料混合均匀。最后向混合均匀的物料中加入蒸馏水,搅拌混合形成饲料面团,将面团置于牧羊双螺杆挤压机(MY56×2A)制成4 mm浮性膨化饲料。经膨化后的饲料颗粒,放置在热风烘干机中,在50 ℃恒温下干燥8 h。风干后的饲料置于双层塑料袋中,保存于-20 ℃冰箱中备用。
养殖实验在越南朔莊研发基地进行。实验鱼苗购自附近育苗场,来自于同一对亲本。实验开始之前,用商业饲料(越南升龙L05;标签营养指标:粗蛋白42%,粗脂肪11%)暂养实验鱼2周,使其适应养殖环境。鱼粉和鱼油替代研究的每个养殖实验正式开始之前,将实验鱼禁食24 h。每个实验,各自从暂养网箱中随机挑选1 920尾大小匀称、体格健壮的实验鱼[鱼粉替代研究,初始平均体质量为(146.7 ± 1.51)g;鱼油替代研究,初始平均体质量为(153.9 ± 0.73)g],并随机分配于两个实验各自的养殖网箱(长×宽×深 = 2 m ×2 m× 2 m),每个网箱实验鱼数目为80尾。两个实验分别将实验网箱随机分组,并分别投喂两个实验的6种不同实验饲料,每个处理设4个重复。
养殖试验持续8周。每天分别在08∶00和17∶00进行投喂,实验鱼达到表观饱食后,捞取残饵烘干后再称重。每天统计每个网箱的摄食量、残饵量、死鱼数目和重量、水温等。养殖期间保持水温28~34 ℃、盐度0~2、溶氧 > 7 mg/L、pH 7.5~8.0、氨氮含量<0.4 mg/L、亚硝酸盐<0.1 mg/L。
实验结束前,实验鱼禁食24 h。取样前,用丁香酚(99%纯度,国药集团上海化学试剂有限公司,用量:丁香酚和水质量体积比为1∶10 000)麻醉实验鱼,对每个网箱中的鱼进行计数、称重,计算生长数据和成活率。随后,每个网箱随机抽取6尾鱼,保存在-20 ℃冰箱,用于体组成分析。每个网箱另取6尾鱼,分别测量其体质量、体长用以计算肥满度,然后在冰上解剖,取出内脏团和肝脏并称重,分别计算脏体比和肝体比。网箱中剩余的实验鱼,用实验料继续饲养2周。之后,间隔15 min,对每个网箱中的实验鱼进行过量投喂。投喂6 h后,从每个网箱中随机取10尾鱼,采用腹部挤压法,在冰上收集后肠粪便,冷冻干燥后,用于分析营养素消化率。网箱投喂顺序按照区组随机化原则决定,即随机从6个处理组中各抽取1个网箱,组成4个小组,每组6个网箱。饲料投喂和粪便采集,按照既定的组内和组间顺序执行,确保统一的饲料消化时间。
鱼体和饲料化学成分分析采用AOAC
存活率(Survival rate,SR,%)、增重率(Weight gain,WG,%)、特定生长率(Specific growth rate,SGR,%/d)、饲料系数(Feed conversion ratio,FCR)、摄食率(Feed intake,FI,%/d)的计算公式:
SR = 100 × Af / Ai | (1) |
WG = 100 × (Wf - Wi ) /Wi | (2) |
SGR = 100 × (lnf - lni) /t | (3) |
FCR = Da / (Wf - Wi) | (4) |
FI = 100 × Da / [(Wi + Wf) / 2] / t | (5) |
式中:Ai和Af分别为初始和终末的鱼体数量;i和f分别为初始和终末的平均鱼体质量,g;Wi和Wf分别为初始和终末的鱼体总质量,g;t为养殖天数;Da为总摄入饲料量(g,干物质)。
肥满度(Condition factor,CF,g/c
CF = Wb / L | (6) |
HSI = 100% × Wl / Wb | (7) |
VSI = 100% × Wv / Wb | (8) |
式中:Wb为鱼体质量,g;Wl和Wv分别为肝脏和内脏团质量,g;Lb为鱼体长,cm。
饲料干物质表观消化率(Apparent digestibility coefficient of dry matter,ADC-DM,%)、饲料营养成分表观消化率(Apparent digestibility coefficient of nutrients,ADC-I,%)
ADC-DM = (1–Dy/Fy)×100% | (9) |
ADC-I = [1–(Fi/Di)×(Dy/Fy)]×100% | (10) |
式中:Dy和Fy分别为饲料和粪便中钇的含量,%;Di和Fi分别为饲料和粪便中营养成分的含量,%。
由
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FM | PM04 | PM08 | PM12 | PM16 | PM20 | ||
存活率 Survival rate/% | 99.7 | 99.7 | 99.7 | 99.4 | 100.0 | 98.8 | 0.40 |
初始体质量 Initial mean body mass/g | 146.9 | 146.4 | 146.6 | 146.5 | 146.8 | 146.7 | 0.87 |
终末体质量 Final mean body mass/g | 495.3 | 495.9 | 493.5 | 495.4 | 494.8 | 497.3 | 1.24 |
增重率 Weight gain/% | 237.2 | 238.7 | 236.7 | 238.2 | 237.0 | 239.0 | 2.32 |
摄食率 Feed intake/(%/d) | 2.4 | 2.3 | 2.4 | 2.4 | 2.3 | 2.3 | 0.01 |
饲料系数 Feed conversion ratio | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 0.01 |
特定生长率 Specific growth rate/(%/d) | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 0.01 |
肥满度 Condition factor/(g/c | 1.7 | 1.7 | 1.7 | 1.8 | 1.7 | 1.8 | 0.05 |
脏体比 Viscerosomatic index/% | 7.7 | 7.6 | 7.7 | 7.4 | 7.9 | 7.5 | 0.11 |
肝体比 Hepatosomatic index/% | 2.2 | 2.3 | 2.2 | 2.2 | 2.2 | 2.1 | 0.03 |
由
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FM | PM04 | PM08 | PM12 | PM16 | PM20 | ||
干物质消化率 ADC of dry matter | 71.6 | 71.5 | 72.3 | 71.9 | 71.7 | 71.6 | 0.42 |
粗蛋白消化率 ADC of crude protein | 87.2 | 86.7 | 86.9 | 86.4 | 87.0 | 87.5 | 0.29 |
粗脂肪消化率 ADC of crude lipid | 88.7 | 89.1 | 89.2 | 88.6 | 89.1 | 89.0 | 0.34 |
由
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FM | PM04 | PM08 | PM12 | PM16 | PM20 | ||
水分 Moisture | 69.2 | 69.0 | 68.7 | 68.7 | 69.1 | 68.9 | 0.21 |
粗蛋白 Crude protein | 18.9 | 19.3 | 19.1 | 19.0 | 19.1 | 18.9 | 0.08 |
粗脂肪 Crude lipid | 7.6 | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 | 0.05 |
灰分 Ash | 4.2 | 3.9 | 4.0 | 3.8 | 4.1 | 3.9 | 0.17 |
由
项目 Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FO | SL13 | SL25 | SL38 | SL50 | SL63 | ||
存活率 Survival rate/% | 99.4 | 99.1 | 99.7 | 99.7 | 100.0 | 99.4 | 0.47 |
初始体质量 Initial mean body mass/g | 153.3 | 153.7 | 154.0 | 154.4 | 153.9 | 154.3 | 0.36 |
终末体质量 Final mean body mass/g | 505.3 | 508.9 | 506.1 | 506.6 | 507.2 | 504.8 | 1.59 |
增重率 Weight gain/% | 229.6 | 231.1 | 228.7 | 228.1 | 229.6 | 227.2 | 1.37 |
摄食率 Feed intake/(%/d) | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 0.02 |
饲料系数 Feed conversion ratio | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 1.2 | 0.01 |
特定生长率 Specific growth rate/(%/d) | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 2.1 | 0.01 |
肥满度 Condition factor/(g/c | 1.6 | 1.6 | 1.8 | 1.7 | 1.6 | 1.6 | 0.10 |
脏体比 Viscerosomatic index/% | 7.7 | 7.4 | 7.6 | 7.3 | 7.6 | 7.8 | 0.15 |
肝体比 Hepatosomatic index/% | 2.1 | 2.2 | 2.2 | 2.1 | 2.2 | 2.2 | 0.04 |
由
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FO | SL13 | SL25 | SL38 | SL50 | SL63 | ||
干物质消化率 ADC of dry matter | 68.3 | 68.6 | 68 | 68.2 | 68.4 | 68.6 | 0.40 |
粗蛋白消化率 ADC of crude protein | 87.2 | 86.3 | 86.5 | 86.7 | 87.5 | 86.8 | 0.45 |
粗脂肪消化率 ADC of crude lipid |
90. |
89. |
89. |
88. |
88. |
87. | 0.26 |
注: 同一行中具有不同上标字母的数值间具有显著性差异(P<0.05)。
Notes: Values in the same row with different letters are significantly different (P<0.05).
由
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
FO | SL13 | SL25 | SL38 | SL50 | SL63 | ||
水分 Moisture | 68.8 | 68.9 | 68.8 | 69.3 | 69.1 | 69.6 | 0.27 |
粗蛋白 Crude protein | 19.2 | 19.2 | 19.3 | 19.1 | 19.3 | 19.1 | 0.06 |
粗脂肪 Crude lipid | 7.7 | 7.7 | 7.5 | 7.7 | 7.7 | 7.4 | 0.09 |
灰分 Ash | 4.1 | 4.1 | 4.0 | 4.0 | 4.1 | 4.1 | 0.05 |
本实验在此前确定的中成阶段线鳢最适蛋白、脂肪需求量的基础上,确定基础饲料配方,并通过研究初始体质量为150 g的线鳢基础饲料配方中最适鱼粉、鱼油替代量,拓展了线鳢鱼粉、鱼油替代研究,为商业配方的优化和成本节约提供理论基础。
鱼粉替代实验中,在最适蛋白、脂肪水平下,鸡肉粉替代65海水鱼粉比例达到83%(即替代鱼粉总量40%)时也未影响线鳢的生长性能、消化率以及体组成。这与之前鸡肉粉替代鱼粉对稚鱼阶段线鳢影响的研究结果类似—该研究中,鸡肉粉替代40%鱼粉后,并不会对线鳢生长及体组成产生显著影响(初始体质量:4.0 g;试验周期:84 d;对照组鱼粉含量:56%
本研究在获得鱼粉最适替代量的基础上,设计等氮等脂的脂肪替代梯度实验,研究中成鱼阶段线鳢鱼油最适替代量。本研究结果表明:大豆卵磷脂替代鱼油后,各处理组线鳢生长、体组成、干物质消化率和粗蛋白消化率均无显著性差异;仅有的显著性差异是,当海水鱼油替代比例在38%~63%时,粗脂肪表观消化率降低1.4%~2.3%。目前,关于线鳢的必需脂肪酸需求研究尚未见报道,但一般而言,淡水鱼类具有合成EPA(二十碳五烯酸)和DHA(二十二碳六烯酸)等高不饱和脂肪酸的能力,饲料中添加亚麻酸(18∶3n-3)和亚油酸(18∶2n-6)分别占饲料总脂肪0.5%~2%即可满足必需脂肪酸需
一般而言,磷脂能够促进脂肪的消化吸
综上,以生长、饲料利用和鱼体组成等作为评判标准,中成鱼阶段线鳢饲料中,鸡肉粉可替代65海水鱼粉比例达到83%、大豆卵磷脂可替代鱼油比例达到63%。本文研究结果,拓宽了线鳢鱼粉鱼油替代研究,同时为商业配方优化和成本节约提供了参考。鉴于本研究条件下,线鳢的生长和饲料利用效率未受显著影响,未来的研究,可进一步探索中成鱼阶段线鳢饲料中鱼粉鱼油的替代极限,进一步降低线鳢商业配方对鱼粉鱼油的依赖度。
参考文献
GATLIN III D M, BARROWS F T, BROWN P, et al. Expanding the utilization of sustainable plant products in aquafeeds: a review[J]. Aquaculture research, 2007, 38(6): 551-579. [百度学术]
HARDY R W. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal[J]. Aquaculture research, 2010, 41(5): 770-776. [百度学术]
CRUZ-SUÁREZ L E, NIETO-LÓPEZ M, GUAJARDO-BARBOSA C, et al. Replacement of fishmeal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets[J]. Aquaculture, 2007, 272(1-4): 466-476. [百度学术]
GALKANDA-ARACHCHIGE H S C, WILSON A E, DAVIS D A. Success of fishmeal replacement through poultry by‐product meal in aquaculture feed formulations: a meta‐analysis[J]. Reviews in Aquaculture, 2020, 12(3): 1624-1636. [百度学术]
CALDER P C. The Relationship between the fatty acid composition of immune cells and their function[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2008, 79(3-5): 101-108. [百度学术]
TOCHER D R, BENDIKSEN E Å, CAMPBELL P J, et al. The role of phospholipids in nutrition and metabolism of teleost fish[J]. Aquaculture, 2008, 280(1-4): 21-34. [百度学术]
JAFARI F, AGH N, NOORI F, et al. Effects of dietary soybean lecithin on growth performance, blood Chemistry and immunity in juvenile stellate sturgeon (Acipenser stellatus)[J]. Fish & shellfish immunology, 2018, 80: 487-496. [百度学术]
YANG W, WU J, SONG R, et al. Effects of dietary soybean lecithin on growth performances, body composition, serum biochemical parameters, digestive and metabolic abilities in largemouth bass Micropterus salmoides[J]. Aquaculture Reports, 2023, 29: 101528. [百度学术]
韩冰.大豆卵磷脂、胆固醇及其交互作用对半滑舌鳎(Cynoglossus semilaevis Günther)稚鱼生长、消化酶活力及相关基因表达的影响[D].青岛:中国海洋大学,2013.HAN B. Effects of dietary phospholipid, cholesterol and their interactions on growth performance, digestive enzymes and expression of related gene of tongue sole (Cynoglossus semilaevis Günther)larvae[D].Qingdao:Ocean University of China,2013. [百度学术]
汤哲,林东晓,蔡明浪,等.低鱼粉高脂饲料添加大豆卵磷脂对黄鳝生长、血清生化指标及肠道菌群的影响[J].水生生物学报,2024,48(3):361-371. [百度学术]
TANG Z,LIN D X,CAI M L,et al. low-fishmeal and high-fat diet supplement with soybean lecithin on growth, serum biochemical indexes and intestinal flora of rice field eel (Monopterus albus) [J].Acta Hydrobiologica Sinica, 2024,48(3):361-371. [百度学术]
PARIPATANANONT T. Snakehead and pangasius catfish, in nutrient requirements and feeding of finfish for aquaculture[M]. Oxford: CABI Publishing, 2002: 396–401. [百度学术]
HONG L W, THEYVEEKA SELVY A, RAJOO P, et al. Channa Striatus Effectiveness in Wound-healing: A Scoping Review[J]. IJRAR-International Journal of Research and Analytical Reviews (IJRAR), 2020, 7(1): 300-8. [百度学术]
李彦先,王晓东,胡海滨等.中成鱼阶段线鳢对饲料蛋白和脂肪的最适需求量[J].上海海洋大学学报,2023,32(6):1205-1215. [百度学术]
LI Y X,WANG X D,HU H B,et al.Optimal protein and lipid requirements of snakehead, Channa striata, during the grow-out stage[J].Journal of Shanghai Ocean University,2023,32(6):1205-1215. [百度学术]
ALIYU-PAIKO M, HASHIM R, SHU-CHIEN A C. Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in snakehead (Channa striatus, Bloch 1793) Fry Reared in Re‐circulating Water System[J]. Aquaculture Nutrition, 2010, 16(5): 466-474. [百度学术]
HUA K, KOPPE W, FONTANILLAS R. Effects of dietary protein and lipid levels on growth, body composition and nutrient utilization of Channa striata[J]. Aquaculture, 2019, 501: 368-373. [百度学术]
AOAC International. official methods of analysis[M]. 22nd ed. Rockville, MD: AOAC International, 2023. [百度学术]
BAYLIAK M M, DEMIANCHUK I, GOSPODARYOV D V, et al. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020, 248: 110746. [百度学术]
JAJIĆ I, KRSTOVIĆ S, GLAMOČIĆ D, et al. Validation of an HPLC method for the determination of amino acids in feed[J]. Journal of the Serbian Chemical Society, 2013, 78(6): 839-850. [百度学术]
ABDUL‐HALIM H H, ALIYU‐PAIKO M, HASHIM R. Partial replacement of fish meal with poultry by‐product meal in diets for snakehead, Channa striata (Bloch, 1793), fingerlings[J]. Journal of the World Aquaculture Society, 2014, 45(2): 233-241. 19 [百度学术]
YIGIT M, ERDEM M, KOSHIO S, et al. Substituting fishmeal with poultry by‐product meal in diets for Black Sea turbot Psetta maeotica[J]. Aquaculture Nutrition, 2006, 12(5): 340-347. [百度学术]
RAWLES S D, RICHE M, GAYLORD T G, et al. Evaluation of poultry by-product meal in commercial diets for hybrid striped bass (Morone chrysops♀× M. saxatilis♂) in Recirculated Tank Production[J]. Aquaculture, 2006, 259(1-4): 377-389. [百度学术]
YANG Y, XIE S, CUI Y, et al. Effect of replacement of dietary fishmeal by meat and bone meal and poultry by‐product meal on growth and feed utilization of Gibel carp, Carassius auratus gibelio[J]. Aquaculture Nutrition, 2004, 10(5): 289-294. [百度学术]
YONES A M M, METWALLI A A. Effects of fishmeal substitution with poultry by-product meal on growth performance, nutrients utilization and blood contents of juvenile Nile Tilapia (Oreochromis niloticus)[J]. Journal of Aquaculture Research and Development, 2015, 7(1): 1000389. [百度学术]
KARAPANAGIOTIDIS I T, PSOFAKIS P, MENTE E, et al. Effect of fishmeal replacement by poultry by‐product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata)[J]. Aquaculture Nutrition, 2019, 25(1): 3-14. [百度学术]
KARAPANAGIOTIDIS I T, PSOFAKIS P, MENTE E, et al. Effect of fishmeal replacement by poultry by‐product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata)[J]. Aquaculture Nutrition, 2019, 25(1): 3-14. [百度学术]
LIN S M, LI F J, YUANGSOI B, et al. Effect of dietary phospholipid levels on growth, lipid metabolism, and antioxidative status of juvenile hybrid snakehead (Channa argus× Channa maculata)[J]. Fish physiology and biochemistry, 2018, 44: 401-410. [百度学术]
EL‐NAGGAR K, MOHAMED R, EL‐KATCHA M I, et al. Plant ingredient diet supplemented with lecithin as fishmeal and fish oil alternative affects growth performance, serum biochemical, lipid metabolism and growth‐related gene expression in Nile tilapia[J]. Aquaculture Research, 2021, 52(12): 6308-6321. [百度学术]
MARTINS D A, VALENTE L M P, LALL S P. apparent digestibility of lipid and fatty acids in fish oil, poultry fat and vegetable oil diets by Atlantic halibut, Hippoglossus hippoglossus L[J]. Aquaculture, 2009, 294(1-2): 132-137. [百度学术]
NG W K, SIGHOLT T, GORDON BELL J. The influence of environmental temperature on the apparent nutrient and fatty acid digestibility in Atlantic salmon (Salmo salar L.) fed finishing diets containing different blends of fish oil, rapeseed oil and palm oil[J]. Aquaculture Research, 2004, 35(13): 1228-1237. [百度学术]
XU N, DING T, LIU Y, et al. Effects of dietary tributyrin on growth performance, body composition, serum biochemical indexes and lipid metabolism‐related genes expression of juvenile large Yellow croaker (Larimichthys crocea) fed with high level soybean oil diets[J]. Aquaculture Nutrition, 2021, 27(2): 395-406. [百度学术]
OLSEN R E, TORE D B, MYKLEBUST R, et al. Effect of soybean oil and soybean lecithin on intestinal lipid composition and lipid droplet accumulation of Rainbow trout, Oncorhynchus mykiss Walbaum[J]. Fish Physiology and Biochemistry, 2003, 29: 181-192. [百度学术]