摘要
线鳢(Channa striata)是东南亚广泛养殖的一种高经济价值淡水肉食性鱼类,但中成鱼阶段(体质量>100 g)线鳢的基础营养需求研究尚处于空白阶段。本研究首先通过添加不同水平鱼粉,设计6组等脂的蛋白梯度实验饲料,探索中成鱼阶段线鳢(初始体质量约150 g)的最适蛋白需求量。养殖实验持续8周,每日两餐饱食投喂。结果显示,当饲料脂肪含量为15%时,随着饲料蛋白含量从36%升高到51%,线鳢的生长性能和饲料效率先升高后趋稳定,而蛋白沉积率则先升高后降低。回归模型拟合增重率和蛋白沉积率,获得中成鱼阶段线鳢对饲料蛋白的最适需求量分别为41.5%和42.3%。在获得最适蛋白需求的基础上,通过添加不同水平的大豆磷脂油,设计6组等氮的脂肪梯度实验饲料,研究中成鱼阶段线鳢(初始体质量约150 g)对饲料中脂肪的最适需求量。养殖实验持续8周,每日两餐饱食投喂。结果显示,当饲料蛋白含量为42%时,随着饲料脂肪从9%升高到19%,线鳢的生长性能和饲料效率先升高后趋稳定,而脂肪沉积率则先升高后降低。回归模型拟合增重率和蛋白沉积率,获得中成鱼阶段线鳢对饲料脂肪的最适需求量分别为15.2%和15.3%。综上,中成鱼阶段线鳢对饲料蛋白和脂肪的最适需求量分别为41.5%~42.3%和15.2%~15.3%。
全球人口持续增长,在2050年预计将达到97
线鳢(Channa striata)是一种凶猛的淡水肉食性鱼类,在亚洲和非洲国家广泛养殖,具有很高的经济价
为了确立中成鱼阶段线鳢对饲料蛋白和脂肪的最适需求量,本研究根据线鳢仔稚
蛋白需求实验:在以鱼粉、鸡肉粉、豆粕为蛋白源,以海水鱼油和大豆磷脂油为脂肪源,以面粉为淀粉源的基础饲料中,添加不同水平的鱼粉,设计6组等脂的蛋白梯度实验饲料,并分别命名为P36、P39、P42、P45、P48和P51(
原料 Ingredients | 实验饲料 Diet | |||||
---|---|---|---|---|---|---|
P36 | P39 | P42 | P45 | P48 | P51 | |
秘鲁鱼粉 Peruvian fish mea | 16.0 | 20.5 | 25.0 | 29.5 | 34.0 | 38.5 |
65海水鱼粉 Fish meal 6 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
鸡肉粉 Poultry mea | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
豆粕 Soybean mea | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
面粉 Wheat flour | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
微晶纤维素 Microcrystalline cellulose | 21.8 | 17.7 | 13.5 | 9.4 | 5.3 | 1.1 |
海水鱼油 Fish oil | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
大豆磷脂油 Soy lecithin | 6.7 | 6.3 | 6.0 | 5.6 | 5.2 | 4.9 |
预混料 Premi | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
饲料成分 | ||||||
粗蛋白 Crude protein | 36.1 | 39.1 | 42.0 | 44.9 | 47.9 | 51.0 |
粗脂肪 Crude lipid | 15.1 | 15.0 | 14.9 | 14.9 | 15.0 | 15.0 |
灰分 Ash | 8.8 | 9.5 | 10.4 | 11.3 | 12.1 | 12.7 |
注: a秘鲁鱼粉:粗蛋白68.3%,粗脂肪8.6%;65海水鱼粉:粗蛋白66.1%,粗脂肪7.4%;鸡肉粉:粗蛋白68.6%,粗脂肪14.5%;豆粕:粗蛋白46.5%,粗脂肪1.8%
Notes:
脂肪需求实验:在以鱼粉、鸡肉粉、豆粕为蛋白源,以海水鱼油和大豆磷脂油为脂肪源,以面粉为淀粉源的基础饲料中,添加不同水平的大豆磷脂油,设计6组等氮的脂肪梯度实验饲料,并分别命名为L09、L11、L13、L15、L17和L19(
原料 Ingredients | 实验饲料 Diet | |||||
---|---|---|---|---|---|---|
L09 | L11 | L13 | L15 | L17 | L19 | |
秘鲁鱼粉 Peruvian fish mea | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 | 25.0 |
65海水鱼粉 Fish meal 6 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 | 20.0 |
鸡肉粉 Poultry mea | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 | 14.5 |
豆粕 Soybean mea | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
面粉 Wheat flour | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
微晶纤维Microcrystalline cellulose | 19.5 | 17.5 | 15.5 | 13.5 | 11.5 | 9.5 |
海水鱼油 Fish oil | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
大豆磷脂油 Soy lecithin | 0 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |
预混料 Premi | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
饲料成分 | ||||||
粗蛋白 Crude protein | 42.1 | 42.0 | 41.9 | 41.9 | 42.0 | 42.1 |
粗脂肪 Crude lipid | 8.9 | 11.1 | 13.2 | 15.0 | 16.9 | 19.0 |
灰分 Ash | 10.4 | 10.3 | 10.5 | 10.1 | 10.4 | 9.9 |
注: a秘鲁鱼粉:粗蛋白68.3%,粗脂肪8.6%;65海水鱼粉:粗蛋白66.1%,粗脂肪7.4%;鸡肉粉:粗蛋白68.6%,粗脂肪14.5%;豆粕:粗蛋白46.5%,粗脂肪1.8%
Notes:
所有原料经超微粉碎之后过80目筛。按照实验配方表,除鱼油和大豆卵磷脂之外,其他原料按逐级放大原则,在混合机中混合均匀。然后将大豆卵磷脂溶解到鱼油中,经加热后喷涂到混合机中与物料混合均匀。最后向混合均匀的物料中加入蒸馏水,搅拌混合形成饲料面团,将面团置于牧羊双螺杆挤压机(MY56×2A)制成浮性膨化饲料。经膨化后的饲料颗粒,放置在热风烘干机中,在50 ℃恒温下干燥8 h。风干后的饲料置于双层塑料袋中,保存在-20 ℃冰箱中备用。
养殖实验在越南朔莊研发基地进行。实验鱼苗购自附近育苗场,来自于同一对亲本。实验开始之前,用商业饲料(越南升龙L06;标签营养指标:粗蛋白42%,粗脂肪11%)暂养实验鱼2周,使实验鱼适应养殖环境。蛋白和脂肪需求研究的每个养殖实验正式开始之前,将实验鱼禁食24 h。每个实验,各自从暂养网箱中随机挑选1 920尾大小匀称、体格健壮的实验鱼[蛋白需求研究初始平均体质量为(149.30±0.68)g;脂肪需求研究初始平均体质量为(149.80±0.46)g],并随机分配于两个实验各自的养殖网箱(长×宽×深=2 m×2 m×2 m),每个网箱实验鱼数目为80尾。两个实验分别将实验网箱随机分组,并分别投喂两个实验的6种不同实验饲料,每个处理4个重复。
养殖实验持续8周。每天分别在08:00和17:00进行投喂,达到表观饱食后,捞取残饵并称重。每天统计每个网箱的摄食量、残饵量、死鱼数目和质量、水温等。养殖期间保持水温28~34 ℃,盐度20~25,溶氧>7 mg/L,pH 7.5~8.0,氨氮<0.4 mg/L,亚硝酸盐<0.1 mg/L。
实验结束前,实验鱼禁食24 h。取样前,用丁香酚(99%纯度,国药集团上海化学试剂有限公司,质量体积比为1∶10 000)麻醉实验鱼,对每个网箱中的鱼进行计数、称重,计算生长数据。随后,每个网箱随机抽取3尾鱼,-20 ℃保存,用于体组成分析。每个网箱另取3尾鱼,分别测量其体质量、体长,用以计算肥满度,然后在冰上解剖,取出内脏团和肝脏并称重,分别计算脏体比和肝体比。
鱼体和饲料常规成分分析均采用AOAC
SR = 100% × Af / Ai | (1) |
WGR = 100% × (wf - wi) /i | (2) |
SGR = 100% × (ln f - ln i) /t | (3) |
FCR = Da / (Wf - Wi) | (4) |
FI = 100 × Da / [(Wi + Wf) / 2] / t | (5) |
PR = 100%× (Wf × Pf - Wi × Pi) / [Da × Pd] | (6) |
LR = 100%× (Wf × Lf - Wi × Li) / [Da × Ld] | (7) |
式中:SR为存活率,%;WGR为增重率,%;SGR为特定生长率,%/d;FCR为饲料系数;FI为摄食率,%/d;PR为蛋白沉积率,%;LR为脂肪沉积率,%;Ai和Af分别是初始和终末的鱼体数量;i和f分别是初始和终末的平均鱼体质量,g;Wi和Wf分别是初始和终末的鱼体总质量,g;t是养殖天数;Da是总摄入饲料量,g(干物质);Pi、Pf和Pd分别是初始鱼体(%)、终末鱼体(%)和饲料(%,干物质)的蛋白含量;Li、Lf和Ld分别是初始鱼体(%)、终末鱼体(%)和饲料(%,干物质)的脂肪含量。
CF = 100 × Wb / L | (8) |
HSI = 100% × Wl / Wb | (9) |
VSI = 100% × Wv / Wb | (10) |
式中:CF为肥满度,g/c
所有数据采用R语言进行统计分析和作图。组间差异比较,使用lm函数进行一般线性回归分析。当模型P小于0.05时,则采用软件包multcomp的cld函数进行Tukey’s多重两两比较。当两两比较的P小于0.05时,则组间差异视为显著。线性回归的模型假设通过残差分析(Residual analysis)进行检验,即:线性关系(Linearity)、正态性(Normality)和方差齐性(Homogeneity of variance)。基于增重率WGR的最适蛋白和脂肪需求量分析,则采用软件包easyreg的regplot函数进行折线模型(Linear plateau model)拟合分析。
饲料中不同蛋白水平对线鳢存活率没有显著影响(P>0.05),见
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
P36 | P39 | P42 | P45 | P48 | P51 | ||
存活率Survival rate/% | 99.7 | 100.0 | 99.7 | 99.4 | 100.0 | 98.8 | 0.38 |
初始体质量Initial mean body mass/g | 149.7 | 148.8 | 149.1 | 148.9 | 149.6 | 149.4 | 1.86 |
终末体质量Final mean body mass/g |
389. |
465. |
53 |
532. |
530. |
533. | 3.67 |
增重率Weight gain/% |
260. |
313. |
357. |
357. |
355. |
357. | 4.78 |
摄食率Feed intake/(%/d) |
2. |
2. |
2. |
2. |
2. |
2. | 0.02 |
饲料系数Feed conversion ratio |
1. |
1. |
1. |
1. |
1. |
1. | 0.02 |
特定生长率 Specific growth rate/(%/d) |
1. |
2. |
2. |
2. |
2. |
2. | 0.02 |
蛋白沉积率Protein retention/% |
35. |
38. |
41. |
38. |
34. |
33. | 0.50 |
脂肪沉积率Lipid retention/% |
40. |
45. |
52. |
51. |
51. |
52. | 0.72 |
注: 同一行中具有不同上标字母的数值间具有显著性差异(P < 0.05)。
Notes: Values in the same row with different letters are significantly different (P < 0.05).
折线回归模型拟合生长性能(

图1 饲料中蛋白水平与线鳢增重率(a)/蛋白沉积率(b)关系拟合分析
Fig.1 Relationship between dietary protein level and weight gain (a)/protein retention (b) of snakehead fed the experimental diets
饲料中不同蛋白水平对线鳢的体组成,包括水分、粗蛋白、粗脂肪和灰分,均无显著性影响(P>0.05),见
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
P36 | P39 | P42 | P45 | P48 | P51 | ||
水分Moisture/% | 68.1 | 68.1 | 67.4 | 67.4 | 68.0 | 68.2 | 0.28 |
粗蛋白Crude protein/% | 19.0 | 19.0 | 19.0 | 19.0 | 18.8 | 19.0 | 0.07 |
粗脂肪Crude lipid/% | 8.0 | 8.0 | 8.0 | 7.9 | 8.0 | 8.1 | 0.07 |
灰分Ash/% | 4.4 | 4.4 | 4.5 | 4.2 | 4.4 | 4.4 | 0.11 |
饲料中不同蛋白水平对线鳢的形体指标,包括肥满度、脏体比和肝体比等,均无显著性影响(P>0.05),见
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
P36 | P39 | P42 | P45 | P48 | P51 | ||
肥满度Condition factor/(g/c | 1.7 | 1.6 | 1.7 | 1.7 | 1.6 | 1.8 | 0.07 |
脏体比Viscerosomatic index/% | 7.5 | 7.9 | 7.6 | 7.8 | 7.6 | 7.9 | 0.18 |
肝体比Hepatosomatic index/% | 2.2 | 2.2 | 2.2 | 2.2 | 2.3 | 2.1 | 0.03 |
饲料中不同脂肪水平对线鳢存活率没有显著影响(P>0.05),见
项目 Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
L09 | L11 | L13 | L15 | L17 | L19 | ||
存活率Survival rate/% | 99.4 | 99.1 | 99.7 | 100.0 | 100.0 | 99.4 | 0.45 |
初始体质量Initial mean body weight/g | 147.9 | 149.1 | 149.9 | 151.3 | 149.7 | 150.8 | 1.09 |
终末体质量Final mean body weight/g |
325. |
372. |
459. |
530. |
531. |
531. | 4.45 |
增重率Weight gain/% |
219. |
249. |
306. |
350. |
355. |
352. | 3.93 |
摄食率Feed intake/(%/d) |
2. |
2. |
2. |
2. |
2. |
2. | 0.03 |
饲料系数Feed conversion ratio |
1. |
1. |
1. |
1. |
1. |
1. | 0.03 |
特定生长率 Specific growth rate/(%/d) |
1. |
1. |
2. |
2. |
2. |
2. | 0.02 |
蛋白沉积率Protein retention/% |
24. |
27. |
33. |
40. |
40. |
39. | 0.56 |
脂肪沉积率Lipid retention/% |
40. |
42. |
43. |
52. |
49. |
45. | 0.69 |
注: 同一行中具有不同上标字母的数值间具有显著性差异(P<0.05)。
Notes: Values in the same row with different letters are significantly different (P<0.05).
折线回归模型拟合生长性能(

图2 饲料中脂肪水平与线鳢增重率(a)/蛋白沉积率(b)关系拟合分析
Fig.2 Relationship between dietary lipid level and weight gain (a) / protein retention (b)of snakehead fed the experimental diets
随着饲料中脂肪水平的升高,鱼体粗脂肪含量逐渐显著升高,而鱼体水分含量逐渐显著下降(P<0.05),见
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
L09 | L11 | L13 | L15 | L17 | L19 | ||
水分Moisture/% |
69. |
68. |
68. |
68. |
67. |
67. | 0.15 |
粗蛋白Crude protein/% | 19.1 | 19.0 | 19.1 | 18.8 | 19.2 | 18.9 | 0.08 |
粗脂肪Crude lipid/% |
6. |
7. |
7. |
8. |
8. |
8. | 0.08 |
灰分Ash/% | 4.6 | 4.5 | 4.4 | 4.4 | 4.6 | 4.5 | 0.10 |
注: 同一行中具有不同上标字母的数值间具有显著性差异(P < 0.05)。
Notes: Values in the same row with different letters are significantly different (P<0.05).
当饲料中脂肪水平为9%~17%时,线鳢的肥满度无显著差异并稳定在1.7左右(P>0.05);随着饲料脂肪水平继续升高达到19%时,肥满度显著性升高达到2.1左右(P<0.05)(
项目Items | 实验饲料 Diet | 合并标准误 Pooled SE | |||||
---|---|---|---|---|---|---|---|
L09 | L11 | L13 | L15 | L17 | L19 | ||
肥满度Condition factor/(g/c |
1. |
1. |
1. |
1. |
1. |
2. | 0.08 |
脏体比Viscerosomatic index/% |
6. |
6. |
7. |
7. |
8. |
8. | 0.15 |
肝体比Hepatosomatic index/% |
2. |
2. |
2. |
2. |
2. |
2. | 0.03 |
注: 同一行中具有不同上标字母的数值间具有显著性差异(P<0.05)。
Notes: Values in the same row with different letters are significantly different (P<0.05).
本实验通过研究初始体质量为150 g的线鳢对饲料中蛋白和脂肪的最适需求量,填补了中成鱼阶段线鳢基础营养需求研究空白,为商业配方设计与优化提供参考数据。实验结果显示,当饲料中粗脂肪为15%时,中成阶段线鳢对饲料中蛋白的最适需求量为41.5%~42.3%。这低于早期研究报道的线鳢仔稚
本研究发现,当饲料中蛋白含量从36%升高到42%时,线鳢的生长性能、饲料系数、蛋白沉积率和脂肪沉积率均显著改善。这与多数蛋白需求实验结果相似:饲料中适宜的蛋白水平能够显著促进鱼类生长、改善饲料利用和提高营养素沉
本研究在获得蛋白最适需求量的基础上,设计6组等氮(42%)的脂肪梯度实验饲料,研究中成鱼阶段线鳢对饲料中脂肪的最适需求量。回归分析显示,当饲料中蛋白含量为42%时,中成鱼阶段线鳢对饲料中脂肪的最适需求量为15.2%~15.3%。这高于早期研究报道的线鳢稚
本实验发现,当饲料中脂肪从9%升高到15%时,中成鱼阶段线鳢的生长性能、饲料系数、蛋白沉积率和脂肪沉积率均显著改善。这与多数脂肪需求实验结果相似:饲料中适宜的脂肪水平,能够显著促进鱼类生长、改善饲料利用和提高营养素沉
本研究发现,线鳢的体脂肪含量、肥满度、脏体比和肝体比随着饲料中脂肪含量的增加而逐渐升高,这与其他鱼类上的研究结果相
综上,初始体质量为150 g的中成鱼阶段线鳢对饲料蛋白和脂肪的最适需求量分别为41.5%~42.3%和15.2%~15.3%。本文研究结果填补了线鳢中成鱼阶段基础营养需求研究空白,为商业配方的设计和优化提供参考。进一步研究需要评估线鳢成鱼阶段(体质量 > 500 g)的最适蛋白和脂肪需求量,完善线鳢不同生长阶段的基础营养需求研究。
参考文献
United Nations. World population prospects 2019: highlights[M]. New York: Department of Economic and Social Affairs Population Division, 2019. [百度学术]
HUNTER M C, SMITH R G, SCHIPANSKI M E, et al. Agriculture in 2050: recalibrating targets for sustainable intensification[J]. Bioscience, 2017, 67(4): 386-391. [百度学术]
FAO. The state of world fisheries and aquaculture[M]. Rome: FAO, 2020. [百度学术]
TACON A G J, METIAN M. Fish matters: importance of aquatic foods in human nutrition and global food supply[J]. Reviews in Fisheries Science, 2013, 21(1): 22-38. [百度学术]
KHALILI TILAMI S, SAMPELS S. Nutritional value of fish: lipids, proteins, vitamins, and minerals[J]. Reviews in Fisheries Science & Aquaculture, 2018, 26(2): 243-253. [百度学术]
PARIPATANANONT T. Snakehead and Pangasius catfish[M]//WEBSTER C D, LIM C. Nutrient Requirements and Feeding of Finfish for Aquaculture. Wallingford: CABI Publishing, 2002: 396-401. [百度学术]
HONG L W, THEYVEEKA SELVY A, RAJOO P, et al. Channa striatus effectiveness in wound-healing: a scoping review[J]. International Journal of Research and Analytical Reviews, 2020, 7(1): 300-308. [百度学术]
QIN J G, FAST A W, KAI A T. Tolerance of snakehead Channa striatus to ammonia at different pH[J]. Journal of the World Aquaculture Society, 1997, 28(1): 87-90. [百度学术]
KUMAR D, MARIMUTHU K, HANIFFA M A, et al. Optimum dietary protein requirement of striped murrel Channa striatus fry[J]. Malaysian Journal of Science, 2010, 29(1): 52-61. [百度学术]
ALIYU-PAIKO M, HASHIM R, SHU-CHIEN CHONG A, et al. Influence of different sources and levels of dietary protein and lipid on the growth, feed efficiency, muscle composition and fatty acid profile of snakehead Channa striatus (Bloch, 1793) fingerling[J]. Aquaculture Research, 2010, 41(9): 1365-1376. [百度学术]
ALIYU-PAIKO M, HASHIM R, SHU-CHIEN A C. Influence of dietary lipid/protein ratio on survival, growth, body indices and digestive lipase activity in snakehead (Channa striatus, Bloch 1793) fry reared in re-circulating water system[J]. Aquaculture Nutrition, 2010, 16(5): 466-474. [百度学术]
SAMANTARAY K, MOHANTY S S. Interactions of dietary levels of protein and energy on fingerling snakehead, Channa striata[J]. Aquaculture, 1997, 156(3/4): 241-249. [百度学术]
MOHANTY S S, SAMANTARAY K. Effect of varying levels of dietary protein on the growth performance and feed conversion efficiency of snakehead Channa striata fry[J]. Aquaculture Nutrition, 1996, 2(2): 89-94. [百度学术]
HUA K, KOPPE W, FONTANILLAS R. Effects of dietary protein and lipid levels on growth, body composition and nutrient utilization of Channa striata[J]. Aquaculture, 2019, 501: 368-373. [百度学术]
AOAC. Official methods of analysis of AOAC international[M]. 16th ed. Arlington: AOAC, 1995. [百度学术]
WILSON R P, HALVER J E. Protein and amino acid requirements of fishes[J]. Annual Review of Nutrition, 1986, 6: 225-244. [百度学术]
TELES A O, COUTO A, ENES P, et al. Dietary protein requirements of fish–a meta-analysis[J]. Reviews in Aquaculture, 2020, 12(3): 1445-1477. [百度学术]
CHO C Y, KAUSHIK S J. Nutritional energetics in fish: energy and protein utilization in rainbow trout (Salmo gairdneri)[J]. World Review of Nutrition and Dietetics, 1990, 61: 132-172. [百度学术]
ZEHRA S, KHAN M A. Dietary protein requirement for fingerling Channa punctatus (Bloch), based on growth, feed conversion, protein retention and biochemical composition[J]. Aquaculture International, 2012, 20(2): 383-395. [百度学术]
SAGADA G, CHEN J M, SHEN B Q, et al. Optimizing protein and lipid levels in practical diet for juvenile northern snakehead fish (Channa argus)[J]. Animal Nutrition, 2017, 3(2): 156-163. [百度学术]
ZHANG Y F, SUN Z Z, WANG A L, et al. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculate ♀× Channa argus ♂) fingerlings[J]. Aquaculture, 2017, 468: 1-9. [百度学术]
WEE K L, TACON A G J. A preliminary study on the dietary protein requirement of juvenile snakehead[J]. Nippon Suisan Gakkaishi, 1982, 48(10): 1463-1468. [百度学术]
KPOGUE D N S, AYANOU G A, TOKO I I, et al. Influence of dietary protein levels on growth, feed utilization and carcass composition of snakehead, Parachanna obscura (Günther, 1861) fingerlings[J]. International Journal of Fisheries and Aquaculture, 2013, 5(5): 71-77. [百度学术]
WANG F, HAN H, WANG Y, et al. Growth, feed utilization and body composition of juvenile golden pompano Trachinotus ovatus fed at different dietary protein and lipid levels[J]. Aquaculture Nutrition, 2013, 19(3): 360-367. [百度学术]
胡毅, 陈云飞, 张德洪, 等. 不同碳水化合物和蛋白质水平膨化饲料对大规格草鱼生长、肠道消化酶及血清指标的影响[J]. 水产学报, 2018, 42(5): 777-786. [百度学术]
HU Y, CHEN Y F, ZHANG D H, et al. Effects of different dietary carbohydrate and protein levels on growth,intestinal digestive enzymes and serum indexes in large-size grass carp (Ctenopharyngodon idella)[J]. Journal of Fisheries of China, 2018, 42(5): 777-786. [百度学术]
秦钦, 陈校辉, 潘建林, 等. 日粮蛋白含量及家系对黄颡鱼幼鱼生长性能和肝脏IGF-Ⅰ mRNA表达水平的影响[J]. 上海海洋大学学报, 2018, 27(2): 190-195. [百度学术]
QIN Q, CHEN X H, PAN J L, et al. Effects of families and feed protein contents on growth performance and hepatic expression of IGF-Ⅰ mRNA of juvenile yellow catfish[J]. Journal of Shanghai Ocean University, 2018, 27(2): 190-195. [百度学术]
黄岩, 李建, 王学习, 等. 饲料中不同蛋白质和淀粉水平对斜带石斑鱼生长性能和肝脏相关代谢酶活性的影响[J]. 水产学报, 2017, 41(5): 746-756. [百度学术]
HUANG Y, LI J, WANG X X, et al. Effects of different dietary protein and starch levels on the growth and liver metabolism of grouper (Epinephelus coioides)[J]. Journal of Fisheries of China, 2017, 41(5): 746-756. [百度学术]
林淑琴. 不同生长阶段大黄鱼的蛋白质和蛋/能比营养研究[D]. 青岛: 中国海洋大学, 2013: 1-32. [百度学术]
LIN S Q. Effects of dietary protein levels and its ratio to energy on growth performances and metabolic responses of large yellow croaker at different growth stages[D]. Qingdao: Ocean University of China, 2013: 1-32. [百度学术]
KAUSHIK S J, SCHRAMA J W. Bioenergetics[M]//HARDY R W, KAUSHIK S J. Fish Nutrition. 4th ed. London: Academic Press, 2022: 17-55. [百度学术]
BAILEY J, ALANÄRÄ A. Digestible energy need (DEN) of selected farmed fish species[J]. Aquaculture, 2006, 251(2/4): 438-455. [百度学术]
ZHAO P F, LI F J, CHEN X R, et al. Dietary lipid concentrations influence growth, liver oxidative stress, and serum metabolites of juvenile hybrid snakehead (Channa argus × Channa maculata)[J]. Aquaculture International, 2016, 24(5): 1353-1364. [百度学术]
彭墨. 饲料脂肪水平和脂肪酸组成对大菱鲆幼鱼脂沉积的影响[D]. 青岛: 中国海洋大学, 2014: 1-54. [百度学术]
PENG M. The effects of dietary lipid level and fatty acids composition on lipid deposition in turbot (Scophthalmus maximus L.)[D]. Qingdao: Ocean University of China, 2014: 1-54. [百度学术]
LI X F, LIU W B, LU K L, et al. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala[J]. Fish & Shellfish Immunology, 2012, 33(2): 316-323. [百度学术]
LÓPEZ L M, DURAZO E, VIANA M T, et al. Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscion nobilis[J]. Aquaculture, 2009, 289(1/2): 101-105. [百度学术]
WANG J T, LIU Y J, TIAN L X, et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum)[J]. Aquaculture, 2005, 249(1/4): 439-447. [百度学术]
WANG Z, MAI K S, XU W, et al. Dietary methionine level influences growth and lipid metabolism via GCN2 pathway in cobia (Rachycentron canadum)[J]. Aquaculture, 2016, 454: 148-156. [百度学术]
PEREIRA T G, OLIVA-TELES A. Evaluation of corn gluten meal as a protein source in diets for gilthead sea bream (Sparus aurata L.) juveniles[J]. Aquaculture Research, 2003, 34(13): 1111-1117. [百度学术]
HANSEN A C, KARLSEN Ø, ROSENLUND G, et al. Dietary plant protein utilization in Atlantic cod, Gadus morhua L.[J]. Aquaculture Nutrition, 2007, 13(3): 200-215. [百度学术]
陆游, 周飘萍, 袁野, 等. 不同小麦淀粉和脂肪水平对大黄鱼的生长性能、饲料利用及糖代谢关键酶活力的影响[J]. 水产学报, 2017, 41(2): 297-310. [百度学术]
LU Y, ZHOU P P, YUAN Y, et al. Effects of different wheat starch and lipid levels on growth performance, feed utilization and hepatic carbohydrate metabolism key enzymes activities in large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2017, 41(2): 297-310. [百度学术]