文章编号: 1674-5566(2018)04-0584-10

DOI:10.12024/jsou.20180202224

基于栖息地适应性指数的长江口刀鲚时空分布特征

佟佳琦^{1,2,3},陈锦辉⁴,高春霞^{1,2,3,5},戴黎斌^{1,2,3},王学昉^{1,2,3,5}

(1.上海海洋大学海洋科学学院,上海 201306;2.中国远洋渔业数据中心,上海 201306;3.大洋渔业资源可持续开 发教育部重点实验室,上海 201306;4.长江口中华鲟自然保护区管理处,上海 200092;5.国家远洋渔业工程技术研 究中心,上海 201306)

摘 要:刀鲚是长江水域重要的洄游型鱼类,现已成为国家级重点保护资源。为研究长江口刀鲚的时空分布 特征,根据2012—2014年长江口中华鲟自然保护区的渔业资源调查采样数据,分析长江口刀鲚相对资源密度 (RAI)与水深,水温,盐度之间的关系,并建立栖息地适应性指数(HSI)模型。结果表明:长江口刀鲚春、冬两 季的 RAI较高,并主要分布在南支水域附近;刀鲚种群在长江口多栖息于水深10m以下,盐度范围为0.0~ 1.0的中上层水域;春季水温与适应性指数(SI)之间变化平缓,夏、秋两季 SI最大值分别出现在22.5℃和 28.5℃,冬季集中分布在15℃附近水域;回归分析表明,使用几何平均法能够更好地反映出长江口刀鲚的时 空分布特征。研究分析了不同季节环境因子对刀鲚分布的影响,依据 HSI 模型讨论了刀鲚的时空分布,并对 选用的 HSI 模型进行评价,为保护长江口刀鲚种群并修复长江口的生态系统提供参考依据。

关键词:栖息地适应性指数;长江口;刀鲚;时空分布

中图分类号: P 723; S 931.4 文献标志码: A

刀鲚(Coilia nasus)又名长颌鲚,俗称刀 鱼^[1],在我国主要分布于长江、钱塘江、淮河等通 海河流,尤以长江流域分布最为集中^[2]。其在生 态类型上分为定居型和洄游型,定居型生活在长 江中下游及其附属湖泊中;洄游型则沿海生长至 性成熟,溯河至长江中下游进行产卵繁殖,幼鱼 孵化后返回海中肥育^[3]。刀鲚在长江口属于溯 河洄游性种类,作为长江水域的传统渔业对象之 一,曾产量极高,占到长江鱼类天然捕捞量的 35%~50%^[4];然而现在长江刀鲚已无法形成渔 汛,种群及个体小型化严重,资源濒临灭绝^[5]。 基于当前的资源形势,农业部建立了长江刀鲚国 家级水产种质资源保护区^[6],可见对长江刀鲚种 群的相关研究已成为刻不容缓的课题。

近年来对于长江口刀鲚的研究主要围绕着 长江中下游至近河口段的刀鲚生物学和生殖特 征^[7]、耳石形态及年龄鉴定^[8]、仔稚鱼^[9]、种群和 资源变动^[10]等方面展开,已经取得的相应研究成 果表明刀鲚的时空分布与水温、水深和盐度等环 境因子的关系密切。然而,对于长江口近海水域 刀鲚的时空分布与环境因子之间的关系研究仍 有不足,相关研究亟待开展。

栖息地指数(Habitat Suitability Index,HSI)模型可以很好地描述物种资源的时空分布与环境因子之间的关系^[11-13]。本文根据 2012—2014 年长江口中华鲟自然保护区及其附近水域的底拖网定点渔业资源调查数据,探讨不同季节长江口刀鲚资源密度与水深,水温和盐度之间的关系;同时,通过比较不同算法下的栖息地指数模型,选择最优 HSI 模型来分析环境因子对刀鲚时空分布的影响,并分析环境因子与刀鲚时空分布的影响,并分析环境因子与刀鲚时空分布的影响,并分析环境因子与刀鲚时空分布的关系。这些研究都旨在为今后长江口刀鲚栖息地的研究提供科学依据,从而达到养护长江刀鲚资源的目的。

收稿日期: 2018-02-13 修回日期: 2018-04-01

基金项目:上海市科委地方能力建设项目(18050502000);长江口中华鲟增殖放流跟踪监测和效果评估项目(S170062);上海市高峰高原学科海洋科学高原学科(沪教委科 2014-70 号)

作者简介: 佟佳琦(1993—), 女, 硕士研究生, 研究方向为渔业资源。E-mail: vocal_tongjia@163. com

通信作者: 陈锦辉, E-mail:1114260882@qq. com

1.1 数据来源

数据来源于 2012—2014 年,每年 2 月(春季)、5 月(夏季)、8 月(秋季)、11 月(冬季)长江 口中华鲟自然保护区及其附近水域的底拖网定 点渔业资源调查数据,共设 15 个调查站点(图 1)。使用网口面积为 3 m×4 m的底拖网,以2 kt 左右的航速在站点附近拖曳 15 min,记录调查结 果包括:时间、经度、纬度、种类、数量、重量、体长 等信息,渔获物数量较多时随机抽取一定比例的 渔获物进行统计,最后换算成全部渔获物的数 量。此外,使用 Hydrolab 水质分析仪等测量仪器 同步测定各站点环境数据,环境数据包括:深度 (Dep,m)、温度(Tem,℃)、盐度(Sal)等,研究水 域环境数据统计值如表 1 所示。采样调查工作中, 由于受到天气、海况等较多因素的影响,各年均 有站点数据缺失的情况,统计结果见表2。

表1 长江口采样调查环境数据统计值

				e	•
季节 Season	季节 环境因子 Season Environmental factors		标准差 Standard deviation	最小值 Minimum	最大值 Maximum
春季 Spring	水深/m	6.189 474	1.620 663	2.1	9.5
	水温/℃	8.918 947	2.189 365	5.6	11.8
	盐度	13.174 21	13.193 92	0	29.8
夏季 Summer	水深/m	6.9	5.951 89	1.5	16
	水温/℃	21.688	1.395 554	19.3	22.7
	盐度 Salinity	2.494	5.426 24	0	12.2
秋季 Autumn	水深/m	5.681 818	3.348 677	2	13.5
	水温/℃	28.57273	0.925 301	26.4	30.1
	盐度	9.790 909	9.321 637	0	19.4
冬季 Winter	水深/m	6.780 952	4.602 241	2.1	20
	水温/℃	13.30 952	2.350 937	8.5	17.6
	盐度	15.171 43	11.168	0	26.2

Tab. 1 Statistics of environment sampling survey data in the Yangtze River Estuary

表 2 2012—2014 年长江口渔业资源调查实际调查站点数量

Tab. 2 Actual numbers of stations of the Yangtze River Estuary fishery survey in 2012–2014

年份 Year	月份 Month	站点数量 Numbers of stations	未调查站点 Stations not surveyed	
	2	13	S6 ₅ S7	
2012	5	11	S2 \ S3 \ S6 \ S7	
2012	8	12	S2 \ S6 \ S7	
	11	11	S4 \ S6 \ S7 \ S8	
	2	10	S1 , S2 , S3 , S5 , S7	
2013	5	12	S2 \ S4 \ S7	
2013	8	15		
	11	14	S8	
	2	9	S1 , S2 , S3 , S5 , S9 , S14	
2014	5	11	S2 、S5 、S9 、S14	
2014	8	11	S2 、S5 、S9 、S14	
	11	10	S2 , S5 , S8 , S9 , S14	

将采样所得的渔业调查数据和同步环境数据以季度为时间尺度进行统计分析并建立模型。资源密度值(Abundance Index, AI)和相对资源密度值(Relative Abundance Index, RAI)是建立栖息地模型的重要指标,可以描述资源的分布状况^[14],用于建立刀鲚栖息地适应性模型。

1.3 栖息地模型建立

本研究利用渔获量与深度(Dep)、水温 (Tem)、盐度(Sal)分别建立对应的适应性指数 (Suitability Index, SI)关系^[15]。通常, SI 的取值 范围为0到1,设定取值为1时为最适宜刀鲚栖 息的区域,反之,取值为0时,则为最不满足刀鲚 的栖息条件^[16]。SI_i计算公式如下:

$$SI_{i,j} = \frac{AI_{i,j}}{AI_{i,Max}} \tag{1}$$

式中: $SI_{i,j}$ 为第 i季第 j个站点的适应性指数, $AI_{i,j}$ 为第 i季第 j个站点的资源密度值(g/h), $AI_{i,max}$ 为 i季的最大资源密度值(g/h)。

选择正态函数建立 Dep、Tem、Sal 与 SI 之间 的关系模型。根据所得指数关系,采用算数平均 法(Arithmetic Mean, AM) 与几何平均法 (Geometric Mean, GM)分别建立栖息地指数 (Habitat Suitability Index, HSI)模型。计算公式如 下:

$$HSI_{AM} = \frac{1}{3} \left(SI_{Dep} + SI_{Tem} + SI_{Sal} \right)$$
(2)

$$HSI_{GM} = \sqrt[3]{(SI_{Dep} + SI_{Tem} + SI_{Sal})}$$
(3)

式中: HSI_{AM}为算数平均法得出的栖息地适应性 指数, HSI_{GM}为几何平均法得出的栖息地适应性 指数。SI_{Dep}、SI_{Tem}、SI_{Sal}分别为用水深、水温与盐度 计算出的适宜性指数。

1.4 模型比较

使用回归分析法来比较两种算法下观测值 和预测值之间的近似程度。计算不同季度线性 方程回归系数(斜率、截距)的平均值。当方程中 截距取值为1,斜率取值为0时,观测值等于预测 值,认为该模型为建立 HSI 模型的理想模型。通 过比较 AM 模型、GM 模型与理想模型之间的关 系,选择最优模型建立 HSI 模型^[17]。线性回归公 式如下:

$$E = \alpha F + \beta$$
 (4)
式中: E 是观测值, F 为预测值, α 为斜率, β 为截
距。

2 结果

2.1 资源密度与环境因子的关系

通过正态概率密度函数拟合 2012—2014 年 不同季度环境因子与其相对资源密度之间的关 系曲线(如图2),拟合结果见表3。通过研究发 现,春季调查水深范围为2.1~9.5 m,最适水深 出现在 5.0~9.0 m 的范围内;水温范围 5.6~ 11.8 ℃之间,最适水温出现在8.0~10.0 ℃左 右;盐度的调查范围为0~29.8,虽然在高盐度和 低盐度区间内均有刀鲚的分布,但0~1.0之间 的盐度范围内的生物资源量占比达到 61.3%,故 此盐度范围更适宜刀鲚栖息。夏季水深的调查 数据值在1.5~16.0 m之间,水温的调查数据分 布在19.3~22.7℃之间,盐度的调查数据范围 为0~12.2。通过分析发现,夏季最适水深为5.0 m 左右,最适水温在 21.0~23.0 ℃之间,最适盐 度为0~1.0之间。秋季水深、水温、盐度的调查 范围分别为 2.0~13.5 m、26.4~30.1 ℃、0~ 19.4。经过分析发现最适秋季刀鲚栖息的水深、 水温、盐度为4.0~6.0 m、28.0~29.2 ℃、0.0~ 1.0。冬季水深调查范围在2.1~20.0 m 之间,在 水深2.5~7.5 m 的范围内,存在大量的刀鲚种 群,为当季度资源量的54.2%,但值得注意的是, 在 S3 站点水深为 20.0 m 的水层中,存在冬季资 源密度值的最大值。在水温方面,冬季采样水温 在8.5 ℃~17.6 ℃之间, 而刀鲚主要分布在11.0 ~15.0 ℃之间,资源密度占整个季节总资源密度 的86.1%。在盐度方面,冬季刀鲚种群所处的盐 度范围为0~26.2,适应性指数较高值出现在0~ 1.0之间。

使用正态分布概率密度函数拟合以相对资源密度为基础的 SI 值和水深,水温,盐度三者之间的函数关系,得出环境因子与 SI 之间的函数关系,得出环境因子与 SI 之间的函数关系见表3,模型拟合通过皮尔逊相关显著性检验(P<0.05)。

2.2 模型选择

AM 模型与 GM 模型各季度线性方程的回归 系数见表4。两者观测值与预测值之间线性关系 见图3,图中圆点表示 AM 模型,方点表示 GM 模 型,GM 模型相对 AM 模型更接近于理想模型。 因此,选用 GM 模型来建立 HSI 模型。

27 卷

图 2 不同季节刀鲚的栖息地适宜性指数曲线 Fig. 2 The SI curves of *Coilia nasus* during different seasons in the Yangtze River

季节 Season	适宜性指数模型 SI model	P值P-value
	$SI_{Dep} = EXP[-0.3814 - 1.4652 \times (Dep - 8.4344)^{2}]$	< 0.05
春季 Spring	$SI_{Tem} = EXP[-1.7127 - 0.1022 \times (Tem - 7.8615)^2]$	< 0.05
	$SI_{Sal} = EXP[-1.1846 - 0.2939 \times (Sal - 1.2132)^{2}]$	< 0.05
	$SI_{Dep} = EXP[-0.1197 - 2.4729 \times (Dep - 5.2022)^{2}]$	< 0.05
夏季 Summer	$SI_{Tem} = EXP[-0.0391 - 2.9053 \times (Tem - 22.9086)^{2}]$	< 0.05
	$SI_{Sal} = EXP[-0.0285 - 2.9673 \times (Sal - 0.6362)^2]$	< 0.01
	$SI_{Dep} = EXP[-0.0270 - 2.9766 \times (Dep - 4.5606)^{2}]$	< 0.05
秋季 Autumn	$SI_{Tem} = EXP[-1.1530 - 0.3130 \times (Tem - 28.5724)^2]$	< 0.05
	$SI_{Sal} = EXP[-0.0004 - 3.1389 \times (Sal - 1.6900)^2]$	< 0.05
	$SI_{Dep} = EXP[-0.0886 - 2.6316 \times (Dep - 20.1054)^{2}]$	< 0.01
冬季 Winter	$SI_{Tem} = EXP[-0.0106 - 3.0759 \times (Tem - 12.8768)^{2}]$	< 0.05
	$SI_{Sal} = EXP[-0.0390 - 2.9056 \times (Sal - 0.7541)^2]$	< 0.01

表 3 不同季节刀鲚适应性指数模型 Tab.3 The SI models of *Coilia nasus* during different seasons

表 4 不同季节不同模型的回归分析比较

	斜率 α	Slope a	截距 β Intercept β		
季节 Season	算数平均法	几何平均法	算数平均法	几何平均法	
	Arithmetic mean	Geometric mean	Arithmetic mean	Geometric mean	
春季 Spring	1.150 0	0.3757	0.074 6	0.040 5	
夏季 Summer	1.576 6	0.271 3	0.013 0	0.069 8	
秋季 Autumn	1.547 1	0.814 4	0.034 2	0.386 5	
冬季 Winter	1.035 7	0.423 5	0.081 9	0.026 0	

图 3 不同模型的预测值和观测值比较(圆点线 表示 AM 模型,方点线表示 GM 模型)

Fig. 3 Comparison between observed values and predicted values under different modeling equations (the dot-line represent AM model and the square-line represent GM model)

2.3 长江口刀鲚最适栖息地分布

根据不同季节的环境数据,计算在 HSI 模型 的区间内的水深均值、水温均值、盐度均值、平均 相对资源密度和资源密度百分比(表5),并绘制

HSI 指数的空间分布图(图4)。结果表明,4 个季 节的 HSI 取值较高的模型参数内,资源密度的百 分比较高,证明模型取得了较好的精度;同时刀 鲚在春季主要分布于水深 8.00 ± 0.00 m、水温 7.57 ±1.88 ℃、盐度 0.40 ±0.15 的环境中。栖 息地适应性较高的地区为北港靠近崇明岛区域, 长兴岛以及长江入海口处。而崇明东滩及其延 伸水域分布相对较少。夏季刀鲚资源则集中分 布于水深 10.17 ±5.53 m,水温 22.51 ±0.17 ℃, 盐度4.19±6.93的范围,整体HSI指数分布较为 平均。秋季所得最佳栖息地的水深为 4.83 ± 0.29 m、水温为 28.47 ±0.25 ℃,盐度为 12.67 ± 10.29。HSI 指数较高的值转至北港附近以及长 江口 122.08°E,31.42°N 的位置。冬季在水深为 15.67 ±7.51 m,水温在 12.57 ±0.29 ℃,盐度为 0.27 ±0.06 的区域出现资源密度的最大值, HSI 较高值出现在南支北港水域及长江入海口,而在 崇明东滩和北支水域内的 HSI 值较小。

表 5 不同季节 HSI 模型的环境指数和相对资源指数

Tab. 5 The environment index, abundance index and percentage

of area at different HSI levels during different seasons

季节 Season	HSI 模型参数 HSI levels	水深均值/m Mean of depth(Mean + SD)	水温均值/℃ Mean of Temperature (Mean + SD)	盐度均值 Mean of Salinity (Mean + SD)	平均相对资源 密度/(尾/h) Mean of abundance index(Mean + SD)	资源密度百分比/% Percentage
	[0.0, 0.3)	_	-	-	-	_
春季 Spring	[0.3, 0.4)	5.83 ± 0.76	11.53 ± 0.31	24.83 ±0.93	20.00 ± 8.00	24.2
	[0.4,0.5)	5.22 ± 1.78	7.60 ± 2.59	24.56 ± 9.54	4.80 ± 1.79	9.7
	[0.5,0.6]	5.00 ± 0.00	9.30 ± 0.00	24.50 ± 0.00	8.00 ± 0.00	3.2
	[0.6,0.7)	7.25 ± 0.35	10.65 ± 0.78	12.2 ± 17.25	4.00 ± 0.00	3.2
	[0.7,0.8)	6.41 ± 1.88	8.52 ± 1.74	0.55 ± 0.50	12.00 ± 7.16	29.0
	[0.9,1.0]	8.00 ± 0.00	7.57 ± 1.88	0.40 ± 0.15	38.00 ± 42.43	30.6
	[0.,0.6)	-	-	-	-	-
	[0.6,0.7)	2.50 ± 0.00	19.30 ± 0.00	0.00 ± 0.00	4.00 ± 0.00	8.3
百夭	[0.7,0.8)	1.50 ± 0.00	21.61 ± 0.00	0.14 ± 0.00	8.00 ± 0.00	16.7
夏孚 Summer	[0.8, 0.9)	-	-	-	-	-
Summer	[0.9,1.0]	10.17 ± 5.53	22.51 ± 0.17	4.19 ± 6.93	12.00 ± 8.00	75.0
-	[0.0,0.4)	_	-	_	-	_
	[0.4,0.5)	10.00 ± 0.00	26.40 ± 0.00	13.60 ± 0.00	8.00 ± 0.00	4.2
<i>1</i> 1 -	[0.5,0.6]	-	-	-	-	-
秋李 Autumn	[0.6,0.7)	6.13 ± 5.31	28.83 ± 0.48	4.95 ± 9.63	14.00 ± 9.52	29.2
Autumn	[0.7,0.8)	5.50 ± 0.00	28.10 ± 0.00	19.40 ± 0.00	8.00 ± 0.00	4.2
	[0.8, 0.9)	4.00 ± 0.00	29.55 ± 0.78	8.55 ± 12.10	4.00 ± 0.00	4.2
	[0.9,1.0]	4.83 ± 0.29	28.47 ± 0.25	12.67 ± 10.29	37.33 ± 34.02	58.3
	[0.0,0.1)	5.39 ± 1.99	13.94 ± 2.02	22.80 ± 3.42	8.00 ± 5.16	19.44
冬季 Winter	[0.1,0.2)	5.35 ± 1.48	12.90 ± 1.56	22.98 ± 2.01	8.00 ± 5.66	11.11
	[0.2,0.3)	5.00 ± 0.00	14.00 ± 0.00	21.90 ± 0.00	16.00 ± 0.00	5.56
	[0.3,0.4)	5.00 ± 0.00	11.80 ± 0.00	24.40 ± 0.00	4.00 ± 0.00	1.4
	[0.4,0.5)	-	-	-	-	-
	[0.5,0.6]	4.90 ± 0.14	9.15 ± 0.92	00.00 ± 0.00	6.00 ± 2.83	4.2
	[0.6,0.7)	5.00 ± 1.41	15.55 ± 2.90	10.30 ± 14.42	10.00 ± 8.49	7.0
	[0.7,0.8)	6.50 ± 0.00	17.40 ± 0.00	0.20 ± 0.00	8.00 ± 0.00	2.8
	[0.8, 0.9)	-	-	-	-	-
	[0.9,1.0]	15.67 ± 7.51	12.57 ±0.29	0.27 ± 0.06	46.67 ± 31.07	48.6

注:"-"表示未有数值出现

Notes:" - " representing no data in the statistical analysis

3 讨论与分析

3.1 资源密度与环境因子的关系

水深是影响长江口刀鲚分布重要的环境因 子。综合四季的分析结果,发现大多数刀鲚在水 深10.0 m以下的区域中分布相对集中,也间接 证实了长江口刀鲚生活在中上层水域中。

长江口刀鲚作为溯河洄游型鱼类,洄游是刀 鲚生活史的重要部分。在此期间,刀鲚对能量的 消耗较大,因此对水温的要求也很高,所以水温 条件将直接影响其生理活动^[18-19]。刀鲚的分布 依据其生理特征对环境的响应变化而发生改变。 刀鲚从春天开始进入汛期,持续3至4个月^[20]; 同时,刀鲚的洄游取决于是否达到洄游要求的水 温条件^[21]。本研究显示,春季采样的温度范围均 在12.0℃以下,整个季节不同水温下资源密度 的分布相对比较平缓,但总体上呈温度越高,资 源密度越大的趋势;进入夏、秋季,采样获得的数 据量较少,资源密度最大的温度分别集中在22.5 ℃和28.5℃;冬季的资源密度集中分布在15.0 ℃的区域,与郭弘艺等^[22]的研究一致。由此推 测,刀鲚从春季开始进行上溯,秋冬季节开始陆 续返回,并且在春季9.0℃之后资源密度增加, 时间上与渔汛期的时间较为吻合。四个季节的 总体资源量较少,也证实了如今长江口刀鲚种群 无法形成渔汛的现状。研究中出现鱼体较大与 较小的两种体长的刀鲚,尤其是春、冬季两个季 节较为明显,原因是洄游过程中的成鱼与幼鱼分 别在河口区域育肥。

长江口地理位置特殊,上游流量的大小直接 影响了长江口的盐度^[23]。有学者证实,刀鲚在生 殖洄游过程中体内的渗透压随着环境不断变化, 以适应新的环境^[13],故盐度也将对刀鲚的资源密 度造成显著影响。本次四个季节的研究中,资源 密度的峰值出现在盐度为0~2.5之间,且春季 和冬季的高盐度值海域也有大量刀鲚种群的分 布。由此推测,春季高盐度区出现的样本极有可 能为较早进行洄游的刀鲚群体,而冬季高盐区出 现的样本为刀鲚产卵后停留在附近水域进行越 冬的群体。且幼鱼相较成鱼多生活在低盐度区 域,而成鱼数量较幼鱼少,生活的盐度范围相对 广泛。

图 4 不同季节的长江口刀鲚 HSI 的空间分布 Fig. 4 The distribution of HSI in the Yangtze River Estuary during different seasons

3.2 基于栖息地适应指数的刀鲚时空分布

长江口刀鲚的栖息地适应性指数季节变化 明显,说明了环境因子对刀鲚的分布和洄游有很 大的影响。春季刀鲚的 HSI 模型指数集中在 0.3~1.0 的范围内,夏季的采样数据集中在5月 进行,0.9~1.0 的资源密度达到 75%,且在空间 上较春季有明显的上溯。秋季采样获得的刀鲚 体长体质量也相对较大,分布在河口附近,而秋 季到冬季的采样期间,刀鲚种群中加入开始洄游 的幼鱼^[24],导致冬季在资源密度上较其他季节都 有提高。

在空间分布上来看,2012—2014年的栖息地

适应性总体符合刀鲚上溯的洄游路线,资源密度 较高的地区出现在南支和北港附近,而长江口近 海地区在洄游开始的夏季较少。全年通海河口 分布较多,证实了刀鲚相对与近海水域主要分布 在通海河口附近^[10]。相对于北支,南支的盐度变 化较小,并维持在较低的水平^[25],所以在相同季 节中,南支的刀鲚分布要多于北支,结合本文所 研究的盐度和刀鲚资源密度的关系,进一步证实 盐度会影响刀鲚的资源密度,并且刀鲚幼鱼偏向 于栖息在盐度变化小,盐度水平低的水域。

3.3 长江口刀鲚栖息地评估方法的选择

本文选用栖息地适宜性指数模型来分析长

江口刀鲚与水深,水温,盐度3个环境因子之间 的关系。HSI 模型在评价栖息地指数方面是使用 最广泛的经典模型^[26],本研究通过选取最优算法 来建立 HSI 模型,取得了较好的精度。但是为了 建立更全面的栖息地模型,保护物种与生态环 境,下一步的研究方向可以考虑环境变量之间的 相互作用与相关性,选取多元统计法来评价栖息 地的适宜性^[27]。例如选用栖息地各变量之间高 度相关的主成分回归法(PCA)、用于处理非正常 的环境变量的广义线性模型(GLM)和分析物种 分布与环境变量之间的非线性关系的广义相加 模型(GAM)。模糊逻辑法也在近年来的栖息地 评价中使用率较高,在数据量缺乏的情况下可以 处理并接受不精确的信息,但是模糊规则会随着 物理参数的增加迅速增加,时间成本较高。在统 计学栖息地模拟预测中,人工神经网络是较有前 景的方向,适合多变量,并有一定的自学能力。 因此,随着调查的不断深入,在今后的研究中可 以考虑用其他的模型来综合分析环境因子的关 系,通过比较和完善刀鲚的栖息地模型,为实现 长江口刀鲚的保护并修复其生态系统提供参考, 更为类似洄游性河口鱼类资源的保护和可持续 利用提供参考。

参考文献:

- [1] 贺刚,方春林,吴斌,等.鄱阳湖刀鲚生殖群体特征及状况分析[J].水生态学杂志,2017,38(3):83-88.
 HE G, FANG C L, WU B, et al. Reproductive characteristics and situation of *Coilia ectenes* (engraulidae) in Poyang Lake [J]. Journal of Hydroecology, 2017, 38 (3):83-88.
- [2] 袁传宓.长江中下游刀鲚资源和种群组成变动状况及其 原因[J].动物学杂志,1988,23(3):12-15.
 YUAN C M. Change and species composition of *Coilia nasus* in the lower reaches of the Yangtze River [J]. Chinese Journal of Zoology, 1988, 23(3):12-15.
- [3] 郭弘艺,刘东,张旭光,等.长江靖江段沿岸刀鲚的生长、死亡参数及种群补充[J].生态学杂志,2017,36(10):2831-2839.
 GUO H Y, LIU D, ZHANG X G, et al. Growth, mortality and recruitment pattern of *Coilia nasus* at Jingjiang section of the Yangtze River[J]. Chinese Journal of Ecology, 2017,36(10):2831-2839.
- [4] 田思泉,田芝清,高春霞,等.长江口刀鲚汛期特征及其资源状况的年际变化分析[J].上海海洋大学学报,2014,23(2):245-250.
 TIAN S Q, TIAN Z Q, CAO C X, et al. Analyzing of annual

changes for the stock status of *Coilia nasus* in fishing season in Yangtze River estuary [J]. Journal of Shanghai Ocean University, 2014, 23(2): 245-250.

- [5] 毛成责,矫新明,钟俊生,等.长江口刀鲚资源现状及保护研究进展[J].淮海工学院学报(自然科学版),2015,24(3):78-83.
 MAO C Z, JIAO X M, ZHONG J S, et al. Research progress on resource status and protection of *Coilia nasus* in Yangtze River Estuary[J]. Journal of Huaihai Institute of Technology (Natural Sciences Edition), 2015, 24(3):78-83.
- [6] 魏广莲,徐钢春,顾若波,等.不同人工饲料对刀鲚幼鱼 生长、血清生化指标及脂质代谢酶活性的影响[J].应用 生态学报,2013,24(12):3567-3573.
 WEIGL,XUGC,GURB, et al. Effects of diets on growth, serum biochemical indices and lipid metabolism in *Coilia nasus* fingerlings [J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3567-3573.
- [7] 董文霞,唐文乔,王磊.长江刀鲚繁殖群体的生长特性
 [J].上海海洋大学学报,2014,23(5):669-674.
 DONG W X, TANG W Q, WANG L. Growth characteristics of reproductive population of *Coilia nasus* in the Yangtze River[J]. Journal of Shanghai Ocean University, 2014, 23 (5):669-674.
- [8] 李孟孟,姜涛,陈婷婷,等.长江安庆江段刀鲚耳石微化
 学及洄游生态学意义[J].生态学报,2017,37(8): 2788-2795.

LI M M, JIANG T, CHEN T T, et al. Otolith microchemistry of the estuarine tapertail anchovy *Coilia nasus* from the Anqing section of the Yangtze River and its significance for migration ecology[J]. Acta Ecologica Sinica, 2017, 37(8): 2788-2795.

[9] 李安东,钟俊生,罗一鸣,等.长江口南支水域刀鲚仔稚
 鱼数量变动的研究[J].上海海洋大学学报,2015,24
 (5):745-753.
 LIAD, ZHONG JS, LUOYM, et al. Distribution and

abundance of *Coilia nasus* larvae and juveniles in the southern branch of Yangtze River Estuary [J]. Journal of Shanghai Ocean University, 2015, 24(5): 745-753.

- [10] 郭弘艺,沈林宏,唐文乔,等.基于渔捞日志的长江靖江 段刀鲚渔获量的时空特征分析[J].上海海洋大学学报, 2014,23(5):774-781.
 GUO H Y, SHEN L H, TANG W Q, et al. Distribution characteristics and temporal and spatial changes of *Coilia nasus* catches at Jingjiang section of the Yangtze River in fishing season based on the data from fishing log[J]. Journal of Shanghai Ocean University, 2014, 23(5): 774-781.
- [11] 陈程,陈新军,雷林,等. 基于栖息地指数模型的毛里塔 尼亚头足类底拖网渔场研究[J]. 上海海洋大学学报, 2017,26(6):939-945.
 CHEN C, CHEN X J, LEI L, et al. Study on fishing ground of bottom trawl based on the habitat suitability model in

Mauritania [J]. Journal of Shanghai Ocean University, 2017,

26(6): 939-945.

- [12] 王易帆,陈新军.中西太平洋鲣栖息地指数预报模型比较研究[J].上海海洋大学学报,2017,26(5):743-750.
 WANG Y F, CHEN X J. Comparisons of habitat suitability index models of skipjack tuna in the Western and Central Pacific Ocean [J]. Journal of Shanghai Ocean University, 2017, 26(5):743-750.
- [13] 蒋瑞,陈新军,雷林,等.秋冬季智利竹荚鱼栖息地指数 模型比较[J].水产学报,2017,41(2):240-249.
 JIANG R, CHEN X J, LEI L, et al. A comparative study on habitat suitability index of *Trachurus murphyi* during autumn and winter[J]. Journal of Fisheries of China, 2017,41(2): 240-249.
- [14] CAMPBELL R A. Constructing stock abundance indices from catch and effort data: Some nuts and bolts [J]. Fisheries Research, 2015, 161: 109-130.
- [15] SU Q. Analyzing fractal property of species abundance distribution and diversity indexes [J]. Journal of Theoretical Biology, 2016, 392: 107-112.
- [16] AUBRY P, PONTIER D, AUBINEAU J, et al. Monitoring population size of mammals using a spotlight-count-based abundance index: How to relate the number of counts to the precision? [J]. Ecological Indicators, 2012, 18: 599-607.
- [17] LIB, TANAKA K R, CHEN Y, et al. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region[J]. Journal of Marine Systems, 2017, 173: 21-30.
- [18] 刘雄军,吴小平,欧阳珊.不同水域刀鲚的若干生物生态 学特性比较研究[J].生命科学研究,2016,20(2):135-139.

LIU X J, WU X P, OUYANG S. A comparative study of some biological and ecological characteristics of *Coilia nasus* in different geographical populations [J]. Life Science Research, 2016, 20(2): 135-139.

- [19] 管卫兵,陈辉辉. 长江口刀鲚洄游群体和越冬群体能量利用方式[J]. 海洋湖沼通报, 2014(4): 35-40.
 GUAN W B, CHEN H H. Energy dynamics in anadromous C. ectens during spawning and overwintering in Yangtze estuary[J]. Transactions of Oceanology and Limnology, 2014(4): 35-40.
- [20] 刘凯,段金荣,徐东坡,等.长江口刀鲚渔汛特征及捕捞 量现状[J].生态学杂志,2012,31(12):3138-3143.
 LIU K, DUAN J R, XU D P, et al. Present situation of *Coilia nasus* population features and yield in Yangtze River

estuary waters in fishing season [J]. Chinese Journal of Ecology, 2012, 31(12): 3138-3143.

[21] 袁传宓. 刀鲚的生殖洄游[J]. 生物学通报, 1987(12):
1-3.
YUAN C M. Reproduction migration of *Coilia ectenes*[J].

Bulletin of Biology, 1987(12): 1-3.

- [22] 郭弘艺,张旭光,唐文乔,等.长江靖江段刀鲚捕捞量的时间变化及相关环境因子分析[J].长江流域资源与环境,2016,25(12):1850-1859.
 GUO H Y, ZHANG X G, TANG W Q, et al. Temporal variations of *Coilia nasus* catches at Jingjiang section of the Yangtze River in fishing season in relation to environmental factors [J]. Resources and Environment in the Yangtze Basin, 2016, 25(12): 1850-1859.
- [23] 孔亚珍, 贺松林, 丁平兴, 等. 长江口盐度的时空变化特 征及其指示意义[J]. 海洋学报, 2004, 26(4): 9-18.
 KONG Y Z, HE S L, DING P X, et al. Characteristics of temporal and spatial variation of salinity and their indicating significance in the Changjiang Estuary [J]. Acta Oceanologica Sinica, 2004, 26(4): 9-18.
- [24] 袁传宓,林金榜,刘仁华,等.刀鲚的年龄和生长[J]. 水生生物学集刊,1978,6(3):285-298.
 YUAN C M, LIN J B, LIU R H, et al. On the age and growth of the Chinese anchovy, *Coilia nasus*, from the Yangtze River[J]. Acta Hydrobiologica Sinica, 1978, 6 (3):285-298.
- [25] 孙昭华, 严鑫, 谢翠松, 等. 长江口北支倒灌影响区盐度 预测经验模型[J]. 水科学进展, 2017, 28(2): 213-222.
 SUN Z H, YAN X, XIE C S, et al. An empirical predictive model for saltwater intrusion in the South Branch influenced by tidal flow from the North Branch in the Yangtze River Estuary[J]. Advances in Water Science, 2017, 28(2): 213-222.
- [26] 官文江,高峰,雷林,等. 多种数据源下栖息地模型及预测结果的比较[J]. 中国水产科学,2015,22(1):149-157.

GUAN W J, GAO F, LEI L, et al. Comparisons of the habitat suitability index models developed by multi-source data and forecasting [J]. Journal of Fishery Sciences of China, 2015, 22(1): 149-157.

[27] 易雨君,程曦,周静.栖息地适宜度评价方法研究进展
[J].生态环境学报,2013,22(5):887-893.
YIYC, CHENGX, ZHOUJ. Research progress in habitat suitability assessment methods [J]. Ecology and Environmental Sciences, 2013, 22(5):887-893.

Temporal-spatial distribution of *Coilia nasus* in the Yangtze River Estuary based on habitat suitability index

TONG Jiaqi^{1,2,3}, CHEN Jinhui⁴, GAO Chunxia^{1,2,3,5}, DAI Libin^{1,2,3}, WANG Xuefang^{1,2,3,5}

(1. College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; 2. National Data Centre for Distant-Water Fisheries of China, Shanghai 201306, China; 3. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; 4. Superintendence Department of Shanghai Yangtze Estuarine Nature Reserve for Chinese Sturgeon, Shanghai 20092, China; 5. National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai 201306, China)

Abstract: Coilia nasus is an important migration type species in the Yangtze River, and has now become a national key protection resource. In order to investigate the temporal-spatial distribution of Coilia nasus in the Yangtze River estuary, according to the survey data of the fishery resources investigation in Shanghai Yangtze estuarine nature during year 2012 - 2014, we analyzed the relationship between relative abundance index (RAI) and water depth, water temperature and salinity in the Yangtze River estuary, meanwhile established habitat Suitability Index (HSI) model. The results show that the RAI of spring and winter was higher, and was mainly distributed near southern branch of the Yangtze estuary. The population of *Coilia nasus* habitat in the pelagic area where water depth below 10 m, salinity range of 0 - 1.0. There is a gentle change between Tem and Suitability Index (SI) in spring, and the maximum value of SI in summer and autumn appeared at 22.5 °C and 28.5 °C respectively, in winter the population had concentrated distribution with the temperature about 15 °C. Regression analysis shows that using the geometric mean method can reflect the temporal-spatial distribution in the Yangtze River estuary better. We analyzed that the influence of different seasons and different environmental factors on the distribution of *Coilia nasus*, based on HSI model we discussed the temporal-spatial distribution of Coilia nasus, also evaluated the selection of HSI model. Aimed at providing some references for protecting *Coilia nasus* population and then rehabilitating the Yangtze estuary ecosystem. Key words: habitat suitability index; Yangtze River estuary; Coilia nasus; temporal-spatial distribution