

从国外渔船改进探讨我国渔船船型发展

AN APPROACH TO DEVELOPMENT OF FISHING BOAT TYPE IN CHINA THROUGH IMPROVEMENT OF OVERSEAS FISHING VESSEL

黄永萌

Huang Yong-meng

(上海水产大学, 200090) (Shanghai Fisheries University, 200090)

关键词 渔船,船型

KEYWORDS fishing boat(vessel), boat type

1 80年代国外渔船变化情况

80年代世界渔船增加速度减慢,吨位增大,性能提高。如表1所示。1980年比1970年增加捕捞船7734艘,平均501.98 总吨/艘;渔业基地船及运输船360艘,平均2731 吨/艘。而1989年比1980年捕捞渔船仅增1478艘;平均638.60 吨/艘;基地船及运输船增加29艘,平均17620.70 吨/艘。80年代新增捕捞船中,1980-1984年为391艘,16.67 万总吨;而1985-1989年为1087艘,77.72万总吨,平均715总吨/艘,较前者船数增加2.78倍,吨位增加4.66倍。基地船和运输船1980-1984年减少了1艘,1985-1989年新增30艘54.13 万总吨,实际平均18000总吨/艘。为此,将1989年与1984年渔船进行对比分析如表2所示。

1989年世界捕捞渔船为22149艘,其中1000总吨以下渔船占总艘数的90.21%,总吨位的50.94%,而100-499总吨渔船1.7959艘为总艘数的81.08%,377.40万总吨为总吨位的37.22%居首位。可见捕捞船构成以小型为主。1000总吨渔船只占9.79%,却占总吨位的49.06%,其中2000-3999总吨渔船1163艘为总艘数的5.25%,315.06总吨为总吨位的31.07%居第二位,

是大中型渔船的主力[Эйдебвман, Д., 1990]。

	表1 世界温船犹订
Table 1	Three several years' statistics of the global fishing vessels

年份	捕技	治船	渔业 基地 {	及运输船	
" "	艘数	万总吨	艘数	万总吨	
1970	12937	531.29	492	249. 07	
1980	20671	919.52	852	347. 39	
1989	22149	1013.91	881	398.49	

注:100总吨以上的渔业船。

表2 1984年和1989年世界捕捞渔船变化情况

Table 2 The variety of the global fishing boats in 1984 and 1989

总吨	100	-4 99	500	- 599	1000	-1999	2000	-3999	4000	及以上	合	计
项目	艘數	万总吨	艘數	万总吨	複数	万总吨	艘數	万总吨	艘數	万总吨	艘數	万总吨
1984	17211	355. 23	1883	129. 25	706	99.10	1206	326. 20	56	26. 02	21062	936.20
1989	17959	377.40	2021	139.14	915	132. 88	1163	315.06	91	49. 44	22149	1013. 91
(+),(-)	+748	+22.17	+209	+9.89	+209	+33.78	-43	-11.14	+35	+23.42	+1087	+77.61
艘數(%)	66.19		12. 21		18.50				3.10		新増1130艘	
万总吨(%)		24.84		11.08		37.84				26. 24	新増892	6万总吨
平均总吨/艘	290	3. 39	723	3.84	161	6. 27			669	1.43		

1989年与1984年相比新增捕捞船中,按艘数计,100-499总吨占66.19%,1000-1999总吨占18.50%,4000总吨以上虽只占3.10%,但绝对艘数增加了62.50%,其增长率最快。按总吨位计,1000-1999总吨占37.64%,4000总吨以上占26.24%,100-499总吨占24.84%。以上三种船型是这段时间发展较快的,在80年代具有代表性,对我国发展新渔船应有所启示。而2000-3999总吨渔的数量和吨位均有减少,但1989年它仍占捕捞船总吨位的31.07%,还是渔船主力。

2 近年国外捕捞渔船船型变化情况

2.1 拖网渔船

小型拖网渔船主要是提高捕捞作业机械化水平,改善渔获物处理与加工水平,使节能化和省力化,提高经济效益;减少船员人数,改善生活条件,稳定船员队伍。1992年日本建成169总吨以西底曳网双拖渔船"第31惠美须丸"其国际吨位为271总吨、总长38.40米,主机功率699千瓦航速11.5节,船员只有10人[栉野幸一,1993]。其特点是.双甲板、上甲板为捕捞甲板,拖网绞机由5吨×100米/分×2台,提高为6.5吨×130米/分×2,还设网袖绞机和牵引绞机各2,辅助绞机等。下甲板为渔获物处理和加工场所,设预冷槽、输送带、制冰机等。采用变距浆推进便于作

业。船员室装空调,厨房机械化电气化程度提高。除通用仪器外,还配有 GPS 卫星导航系统等,挪威为冰岛造的"Bylgia"号鱼片加工船,36.40米742千瓦,有鱼片加工机组和冻结装置,舱温-30℃,船员18人,德国"Andey"号拖网加工船33.4米,装有鱼片生产线,去鱼头生产线、加工虾生产线及冻结装置,还设拖网绞机、手纲绞机、辅助绞机和起重机,主机1325千瓦,船员15人[Makeeb, Д., 1990]。

大型拖网渔船主要是提高捕捞和加工机械化水平,广泛采用自动驾驶系统,提高监控拖网作业的水平,"Georg Kasa"号拖网加工船是德国90年前后为原苏联制造的50艘拖网渔船系列之一[FNI,1990a]。总长120.7米,7703总吨,主机功率2650千瓦×2,可底拖或中层拖网全年作业。拖网绞机底径拉力260吨,37毫米曳纲4000米,4米3卷网机×2,辅助绞机×4,日制罐能力2.6万罐,冻结能力50-60吨,制鱼肝油能力4.4吨,加工鱼粉原料鱼50-60吨,航速15节,船员110人。90年代美国建造了总长92.66米的拖网加工船日加工鱼400吨,生产鱼糜80吨,高蛋白真空干燥鱼粉35吨、全部出口日本[FNI,1990b]。1990年荷兰造"Dirk Diederik"号冷冻拖网加工船总长110米,日冻结能力300吨,主机功率3207千瓦×2,配罗兰 C,GPS 全球卫星定位系统,运程彩色声纳和综合拖网系统等仪器[WF,1990a]。1992年挪威 Rapp-Hydema公司推出 ICS4000综合拖网系统是较先进的[FNI,1991]。它综合了鱼群探测系统和拖网渔具定位系统的数据,拖网绞机控制系统,主机转数、螺距控制、卫星导航和自动驾驶。当渔船探测到鱼群后,若可捕率等于或高于20%,该系统立即显示渔船航向、航程,距鱼群距离,打印出渔船到达鱼群所需时间;若航向不对头,能自动控制渔船转向鱼群并调节相应航速;能根据鱼群所处水深深度,计算出应放曳纲长度,使拖网瞄准鱼群下网;当鱼群上升或下降时,能控制拖网自动跟踪,能控制网具自动避开海底障阻物。

2.2 围网渔船

小型围网渔船国外长20米的也装有冻结装置。300-500吨级的美式围网船日本1989年建成 12艘,1990年建成14艘「水产厅渔船课,1991],1992年建成7艘。其中有一批379总吨、排水量 1281总吨的中型围网船。1990年12月建成的第81源福丸、第112福一丸等,总长57.85米,主机功 率1324-1912千瓦、航速15.72节,船员21人、冻结装置 R22140千瓦×4,冻结能力从70吨提高至 110-165吨/日,最大220吨/日,渔舱温度-40℃,括纲绞机由12吨×27.5米/分,提高至14吨× 80米/分,动力滑车为7吨×80米/分。并配跑纲绞机、浮子纲绞机、底环支线绞机、解底环机等。 探鱼声纳彩色显示打印,距离、精度进一步提高,普遍应用 GPS 卫星定位导航系统。挪威527总 吨的"Bjarne Nilson"号围网船长35.45米,主机功率904千瓦[FNI,1992]。配2×13吨围网绞 机,603型三滚筒围网起网机和鱼泵2台。大型围网船各国竞相建造。1990年前后西班牙建成了 2000、2400和2640总吨的围网船引人注目。其中2640总吨的"Albacora"号总长105米,是目前世 界上最长的围网船[WF,1990b, P-Ж,1990a]主机功率5140千瓦,鱼舱容积3000米3,航速17. 2节,装有捕捞机械18台。绞机拉力400千牛、主卷简容28毫米括纲3000米;动力滑车直径2米, 拉力92.5千牛。性能是创纪录的。冻结能力140吨/日,配26台盐水泵280米3/小时,并有长10米 功率590千瓦工作艇1艘。该国新建的"Kauri"号围网船随带的工作艇功率为600千瓦是目前最 大的[P-Ж,1991b]。美国88年前后建造了6艘金枪互围网船,包括长88.77米和70.10米的,还 出口印度和韩国各1艘[FNI,1988]。法国建造了该国最大的"Gueotec"号围网船,总长82米主 机功率3640.7千瓦,日冻金枪鱼120吨、25人。荷兰造的"Intertuna Des"号长77.30米,1490总 吨,主机功率3500千瓦[P-X 1991c]。带工作艇2艘,长4.8米块艇2艘航速为32节。1992年我国 台湾省也建造了2000总吨的围网船两艘,总长78.33米,主机功率2942千瓦, 航速17.5节。围网绞机和动力滑车为引进[WF, 1992]。

2.3 金枪鱼延绳钓渔船

日本式远岸金枪鱼延绳钓渔船船型为许多国家引进仿制。日本过去以200-300总吨为主力,近年则以300-500总吨为主,如表3所示。尤以379和439总吨居多,由于受200海里水域限制、钓获量减少,使作业日期延长,成本增加。相应钓具支线数增加,长度增长有向深绳式发展倾向,促使渔船吨位增大,捕捞作业性能提高。

		Tubic 5	Jupunese tui	ia iongingi	Dullt III 170	7 1770
总	年一份	87	88	89	90	备注
	50以下	9(9)	11(11)	10(10)	14(14)	括弧内数字为玻璃钢材质渔船数。
	50-100	6(3)	10(9)	7(7)	4(4)	
	100-200	8	9	13(1)	21(4)	
	200-300		7	4	7	y
	300-500	46	60	62	62	
	500-1000		1			

表3 1987-1990年日本金枪鱼延绳钓渔船建成情况 Table 3 Japanese tuna longliner built in 1987-1990

为了节能,1990-1991年建成的379总吨的第70吉丸[近藤好树,1991]、第11秋田丸和第85福吉丸等主机功率仅为699千瓦。439总吨的第8东荣丸[渡边丰德,1991]和第1昭福丸为1103和1250千瓦,合国际吨位660总吨。鱼舱温度大多为-50℃,冻结室为-55℃,个别的为-55℃和-60℃。干线起线机功率则从11千瓦提高至22千瓦,有的30千瓦,支线绞机普遍使用,以绕线式居多、浮标绳绞机已普及、干线理线机成为300总吨以上渔船的唯一处理机。输送带一般3条,分别用于干线、支线和浮标绳运输,放线机均有,近已研制成功支线与干线自动联结机。冷冻设备功率多为60千瓦×4,有的60千瓦×3或2,冻结能力提高为9.6吨/36小时,有的6.72吨/36小时。第8东荣丸4个冻结宝均装有提升机[渡丸丰德,1991]。居室有空调,单人间渐多,噪音从72降至65分贝,不少船装有GPS和NNSS卫导装置。船员从27人降为21-22人。1989年美国马可船厂建造了北太平洋冷冻延绳钓渔船,1991年投产的"Frontier Explorer"号是其中的第3艘,被称为能作自动装饵,而又高效全方位钓鱼的船舶,总长41.20米,冷藏舱480米³,可放带头去脏鱼268吨,主机功率862.2千瓦。西班牙新建的总长60米的日式金枪鱼延绳钓船带干线长150公里的延绳钓具。

2.4 鱿鱼钓渔船

日本的鱿鱼钓渔船颇具特色。近年新建的近海鱿鱼钓船多为50总吨以下的小船,几乎全用玻璃钢制造。如表4所示。远洋鱿鱼钓船,船型渐趋大型化,以300-500总吨为主。1986年造的302总吨的长功丸,国际吨位965总吨。总长67.75米,主机功率1176千瓦,双甲板,渔舱788.44米³,钓机62台,船员22人[佐佑木勉,1987]。1988年建成的第18善丸349总吨,总长70.81米,

注,根据水産厅渔船课[1989;1991]的资料。

主机功率1342千瓦,鱼舱1072米³,副机441千瓦×2,冷冻设备75千瓦×4和60千瓦×2,集鱼灯 150只×2千瓦,钓机52台,输送带8条[向井一浩,1988]。一般日冻结量40-80吨,有的24吨,冻结室温度-40~-45°C,有的-50°C,鱼舱保持温度-30~-35°C[山口繁,1988]。

	•			
87	88	89	90	备注
26(26)	61(59)	40(40)	19(19)	括弧内为玻璃钢材质。
26				
		2	1	
-	_	-	_	
35	4	7	_	
	87 26(26) 26	87 88 26(26) 61(59) 26 — —	87 88 89 26(26) 61(59) 40(40) 26 2	87 88 89 90 26(26) 61(59) 40(40) 19(19) 26 2 1

表4 1987-1990年日本鱿鱼钓船建造情况 Table 4 Japanese squid liner built in 1987-1990

3 对发展我国渔船船型的探讨

随着我国经济发展与国际地位提高,船舶建造技术已达国际水平。目前我国近海渔船已有相当水平,但性能与国外尚存差距。大中型渔船数量少、品种单一、且全系引进、与我国地位极不要称。本文拟对我国2000年前发展新船型、缩短与国外的差距、赶上国际先进水平进行探讨。对近海小型渔船要考虑产品内销、价格与国外存在较大差价、燃油价高和劳动力便宜的特点,宜适当提高机械化水平,提高鱼品质量。对远洋渔船产品销售在外,经济效益高,渔船性能应较先进,品种应多样化,船体国内制造,设备主要立足国内,可少量引进、以求早日发挥效益。

3.1 建造300总吨级双甲板双拖渔船

我国现有东黄海双拖渔船250-350总吨,441-735千瓦,均为单甲板,机械化程度与鱼品质量不高,船员25-27人与日本1992年新建的270总吨"第31惠美须丸"船员10人差距很大。300吨级双甲板双拖渔船长约40米,主机功率662或735千瓦。拖网绞机50千牛×80米/分×2,应增加网袖绞机和牵引绞机。节约时间和减少人员。新装海水制冰机,免除带冰和碎冰工序。渔获物可直接卸入下甲板,避免阳光照射影响鲜度。用冷海水预冷,冷海水洗涤、部分冻结、部分装箱,提高冻鱼和冰藏鱼档次,出口可获较高经济价值,船员16人左右,我国已建造过8162型300吨级单拖渔船出口,积累了经验,这型渔船国内能造好。

3.2 尽早建造400-500吨级金枪鱼延绳钓渔船

远洋金枪鱼延绳钓渔船经济效益高、各国绳相建造、国内曾引进数艘。现有1艘在印度洋西海岸作业。400-500总吨级相当于日本349总吨以内,船体和主机功率相对较小,易造和取得经验,建议总长50-55米,主机功率735或882千瓦,用双速比齿轮箱固定浆推进,渔舱容积约450米³,经济航速12节,船员21人。船体与主副机立足国内,为加快投产速度,也可从日本引进部分捕捞机械和冻结装置。配3千牛干线起线机和1.5千瓦的支线绞机、放线绞机、理线机及行走小车与浮绳绞机,输送带3条,制淡水机等。冻结温度为-55℃,舱温-50℃则鱼品质量为可作生鱼片,价值高。冻结室应装提升机。在技术经济效益取得成功的基础上,2000年前再建造600-700

注,资料来源同表3。

总吨级相当于日本439总吨,长约60米,主机功率1100千瓦,鱼舱600米°的大型钓船、除日、韩外,我国台湾省有建造远洋金枪鱼钓船的丰富经验,可通过民间进行考察与技术交流有助成功。

3.3 尽快研制300-500总吨级远洋鱿鱼钓渔船

鱿鱼资源丰富开发潜力大,我国用改装渔船在日本海钓鱿鱼已获经济效益、掌握了技术,培养了人才,但尚无专业渔船。我国可参照日本船型先造单甲板船。总长不超过50米,主机功率882-1000千瓦、鱼舱约370米³、航速12节,配自动钓机约40台,集鱼灯2千瓦×100,船员25人。制冷设备58千瓦×4,冻结温度-35℃,舱温-30℃,产品销往国外。在取得效益的基础上再造长60多米,功率近1200千瓦,钓机近60台、冻结温度-40~-45℃,舱温-30~-35℃的钓船。

3.4 研制1500总吨双甲板中型单拖渔船

据表2,1984-1989年新增捕捞船中,1000-1999总吨占总船数的18.50%,居第二位;而占总吨位的37.64%,居第一位,是国际发展最快的船型,经济效益好、应速即研制、迎头赶上。建议总长70多米,主机功率约2000千瓦,双甲板、尾滑道船型,变距浆推进,使能获较好的自由航行和拖网作业工况,拖网绞机150-160千牛×80米/分,方案一为冷冻拖网船,渔获物经分类清洗后进冻结间冻结,中小型鱼用式平板冻结机装盘冻结,大型鱼用立式平板冻结机冻结、制冷压缩机及平板冻结机国内已能配套而不需引进,上马快。方案二为鱼糜加工拖网船,国内已有陆用采肉机、漂洗机、鱼肉脱水机、精滤机、斩拌机、鱼糜成型机。用于船上有的机械需在结构尺度上加以调整,减少底面积增加高度,只需引进鱼香肠结扎机和模拟蟹肉成型机即可,耗汇不多。现实性较强、效益也好。方案三为鱼片加工拖网船。制鱼片所需的去头、开膛去脏、切片、去鱼皮等整套鱼类处理机械均需引进,鱼片保藏仍需平板冻结机、制冷压缩机等制冷设备系统。鱼头、内脏、鱼皮和鱼骨等虽可用于制鱼粉和鱼油、鱼粉价格不错、又需进口具有切碎器、蒸煮器、压榨机、鱼油分离机、汁液浓缩器、干燥器和粉碎机等的成套船用鱼粉加工机械,这个方案引进设备和耗汇多、现实性差。故宜先造冷冻船,后造加工船。船上应配卫星导航等仪器设备。

3.5 着手进行5000总吨玄及大型拖网加工船的设计研究

表2所示1984-1989年间这种吨位的船新增35艘23万总吨,全部是拖网船,艘均6691.43总吨、说明效益更好,这也是同期2000-3999总吨渔船减少的原因之一。我国自1985-1993年引进10多艘2000-3999总吨拖网加工船以来,已掌握相关的航海、资源、捕捞、机电、加工、营销等技术和管理经验,培养了人才,经济效益好。5000总吨级拖网加工船总长约110米,主机功率5000千瓦,尾滑道、变距浆推进、能采用底拖网和中层拖网作业,具有完善的鱼品加工能力、装有成套鱼类处理机械、既可制鱼片,也可制冻鱼块;应装鱼粉加工设备以制鱼粉和鱼油、还可考虑制鱼罐头和制鱼肝罐头以提高综合经济效益。由于这种船效益好,难于购买二手旧船,即使买了设备必然严重老化,设备更新和维修费用大,故拟自已设计制造,引进加工设备和部分助渔导航仪器包括卫导装置。

3.6 建造美国式中型金枪鱼围网渔船

美式金枪鱼围网渔船性能好效益高已为多数国家接受,日本1989-1991年建造此种船达数十艘已如前述[水产厅渔船课,1989,1991],而我尚无。建议建造总长50多米,主机功率约600千瓦满足15节航速要求追捕金枪鱼,鱼舱容积600米°,冻结能力70-100吨/日,船员20人,鱼获物由冷海水预冷并进行盐水冻结,舱温-40℃,括纲绞机140千牛×80米。动力滑车70千牛×80米/分,及其他捕捞机械。为求早日投产除助渔导航仪器需引进外,捕捞机械中绞机、动力滑车

等应自行研制,初始必要时也可引进。根据近年美、西、法、荷等竞相建造1500-3000总吨的大型金枪鱼围网渔船,在南太平洋就有包括我国台湾省在内的140艘大中型进行作业[FNI,1990c]。故我国也应着手建造大型围网船,建议建1500-2000总吨级、总长不超过80米,主机功率3000千瓦的美式金枪鱼围网船。

3.7 着手玻璃钢材质沿海捕捞船的研制与推广

与钢质和木质比较,玻璃钢具有材质轻、强度好、耐腐蚀等优点,铝质虽好但价格高,故玻璃钢是理想的造船材料。我国已采用玻璃钢制造内河和沿海小艇、性能良好,我国沿海小型渔船采用钢材制造,而日本已全部采用玻璃钢,如表3、表4所示,且已出现100-200总吨玻璃钢渔船,故我国急需研制30-50总吨及50-100总吨沿海拖网、围网、钓、定置网等渔船,并加以推广。

1989年韩国100总吨以上渔船1112艘,49.81万总吨,居世界第5位。其渔业基地船和运输船44艘7.96万总吨;捕捞渔船1068艘41.85万总吨中,500-999总吨67艘5.10万总吨,1000-1999总吨27艘3.82万总吨,2000-3999总吨10艘3万总吨,4000总吨以上8艘3.99万总吨、100-499总吨956艘25.92万总吨[Эпдебвман,Д.,1990]。而我国千吨以上基地船和运输船不足10艘。500总吨以上捕捞船不足20艘,主要是引进2000-3999总吨渔船约15艘4万余吨。这一档船超过它,但多系70年代的产品,不久将先后淘汰。我国应发展多种船型如前所述。2000年前500总吨以上的捕捞船、千吨以上的渔业基地船和运输船可以韩国为追赶目标,在数量和吨位上缩短与韩国的差距。

参考文献

- [1] 山口 繁,1988。最近の大型いガ钓ソ渔船の冷冻装置にっいて。渔船,(278):60-67。
- [2] 水産厅海洋渔业部渔船课,1989。昭和63年度の渔船界の动向。渔船,(282),1-11。
- [3] 水産厅海洋渔业部渔船课,1991。平成2年度の渔船界の动向。渔船,(294),1-9。
- [4] 近藤好树,1991。379トン型まぐゐ延绳钓渔船"第70吉丸"。渔船,(291),13-21。
- [5] 佐佐木 勉,1987。钢制302トン型いガ 一本钓渔船"第18长功丸"。渔船,(268),25-33。
- [6] 向井一浩, 1988。 钢制349トン型いガー本钓漁船"第18善丸"。漁船(274),44-48。
- 「7] 栉野幸一,1993, 钢制169トン型以西底网渔船"第31惠美须丸"。漁船,(304),44-45。
- [8] 渡边丰徳,1991。439トン型まぐる延绳钓渔船"第8东荣丸"。渔船,(291):5-12。
- [9] FNI (Ed. Bd). 1988. New purse seiners for U. S. tuna fleet. Fish News Init., 27(9):35
- [10] -----,1990a, Fifty-ship series for Soviet Union ibid, 29(6):24-27.
- [11] ----,1990b, Biggest factory trawler from U. S. yard. *ibid*, 29(4):44-45.
- [12] ----,1990c. Pacific purser fleet grows. ibid, 29(5); 6.
- [13] ----,1991. Auto-trawling leaps ahead. ibid; 30(12): 28-29.
- [14] ----,1992. Seiner targets white fish and pelagics. ibid. 31(5):60-62.
- [15] WF (Ed. Bd), 1990a. Dutch yard delivers supertrawler, Dirk Diederik. World fishing. 39(11): 27.
- [16] ----,1990b. Barreras delivers world's largest tuna-purse seiner. ibid, 39(8): 43.
- [17] ----,1992. Taiwanese yard builds first Campbell-licensed super seiners. ibid, 41(3):12.
- [18] Эйдебвиан, Д., 1990. Рыбонромысывып Флот, в 1989. рыб. Х-во., (8)67-71.
- [19] Макеев, Д., 1990. Финетироночный морозильный траулер-ваводАпдеу 9-И Промыш. рыболов. (1): 11-13.
- [20] Р-Ж, 1991а., Обору дование сейнера Р-Ж 38 обор. пищ. промыщ. (9): 36.
- [21] Р-Ж, 1991b., Оборудование тунцеловного сепнера Р-Ж 38 обор. пищ. промыщ. (9): 35.
- [22] Р-Ж, 1991с., Оборудование сейнера Р-Ж 38 обор. пищ. промыщ. (9); 36.