摘要
为了探索南太平洋中尺度涡对长鳍金枪鱼(Thunnus alalunga)渔获量的影响模式,揭示不同类型涡旋与南太平洋长鳍金枪鱼延绳钓渔获量的相关关系,基于涡特征环境数据利用EddyNet深度学习模型自动检测识别南太平洋中尺度涡,结合渔业探捕数据,分析捕捞站点到涡边缘及涡中心的相对距离对长鳍金枪鱼单位捕捞努力量渔获量(Catch per unit effort, CPUE)的影响。结果显示,南太平洋反气旋涡数量通常多于气旋涡,同时半径大于气旋涡。气旋涡和反气旋涡均显示,随着捕捞站点到最近涡边缘外侧的相对距离的增加,长鳍金枪鱼CPUE均呈下降趋势。在涡扰动区域内,反气旋涡的CPUE高于气旋涡,且随着捕捞站点到涡中心相对距离的增加,CPUE逐渐减小。研究表明,中尺度涡相较于背景场对渔获物产量具有积极的调控作用,且反气旋涡和气旋涡对于长鳍金枪鱼空间分布具有不同的影响机制。本研究进一步加深了对海洋中尺度涡与长鳍金枪鱼空间分布之间复杂关系的理解,为渔业捕捞效率的优化和可持续管理提供了科学依据。
长鳍金枪鱼(Thunnus alalunga)是南太平洋延绳钓金枪鱼渔业的重要目标种类,也是中国延绳钓渔船的主要捕捞对象之
海洋中尺度涡通过自下而上的气旋涡和反气旋涡过程,不断混合上层海水并输送营养物质,进而促进了初级生产力的提高和浮游植物的生长,高营养级生物向浮游生物密集区域汇集,形成复杂的捕食-被捕食生态互
本研究以南太平洋法属波利尼亚南部公海与皮特凯恩岛东北部公海为研究区域,基于涡旋特征环境数据,采用EddyNet深度学习模型对中尺度涡进行识别分析并统计其时空分布特征,分析涡旋类型及捕捞站点与涡旋空间距离等特征与南太平洋长鳍金枪鱼延绳钓渔获量的相关关系。研究结果将进一步加深对海洋中尺度涡与长鳍金枪鱼空间分布之间复杂关系的理解,并为渔业捕捞效率的优化和可持续管理提供科学依据。
长鳍金枪鱼捕捞数据来源于浙江省远洋渔业集团股份有限公司所属“新世纪71号”超低温金枪鱼延绳钓渔船海上探捕调查。调查数据包括作业位置、作业日期、捕捞量和钓钩数量等信息。探捕区域为法属波利尼亚南部公海(2013年11月—2014年2月)和皮特凯恩岛东北部公海(2015年11月—12月),空间范围为10°S~40°S,160°W~115°W(

图1 捕捞站点图
Fig.1 Exploratory fishing survey stations
本研究中采用的中尺度涡识别检测的特征环境为海面高度异常值(Sea level anomaly, SLA),数据来源于哥白尼海洋环境观测服务中心(The Copernicus Marine Environment Monitoring Service,CMEMS)官方网站(https://marine.copernicus.eu/)提供的全球海洋网格化L4海面高度和衍生变量产品,空间分辨率为0.25°×0.25°,时间分辨率为d。
本研究采用LGUENSAT

图2 基于EddyNet模型的中尺度涡识别(以2015年12月17日为例)
Fig.2 Mesoscale eddy recognition based on EddyNet model(December 17, 2015)
红色多边形为反气旋涡;蓝色多边形为气旋涡。
Red and blue polygons represent anticyclonic eddies and cyclonic eddies, respectively.
基于涡旋的归一化半径识别和分类不同大小涡旋。通过提取涡旋最边缘的轮廓线,并转换为地图文件(shp格式)计算其面积S。涡旋的归一化半径基于面积进行计算,公式如下:
(1) |
式中:r为涡旋的归一化半径,m;S为涡旋面积,
中尺度涡旋的特征范围按归一化半径分为涡中心、涡内部、涡扰动和涡边缘等4个部分(

图3 归一化半径对涡特征范围定义
Fig.3 Definition of the range of normalized radius pair eddy features
采用单位捕捞努力量渔获量(Catch per unit effort, CPUE)作为估计长鳍金枪鱼相对丰度的指标,计算公式:
(2) |
式中:CCPUE为长鳍金枪鱼单位捕捞努力量渔获量,尾/千钩;Cn为第n个作业钩次的长鳍金枪鱼渔获量,尾;En为第n个作业钩次投放的钓钩数量,千钩。
本研究采用广义加性模型(Generalized additive model, GAM)拟合长鳍金枪鱼CPUE与涡旋特征之间的非线性关
(3) |
式中:s为平滑样条函数;其中s()为探捕调查站点到涡边缘的相对距离项;s()为纬度项;s()为经度项;ε为误差项。
2013年11月—2014年2月期间,法属波利尼西亚南部公海识别的气旋涡数量为177~252个,反气旋涡数量为224~295个;气旋涡半径为23.53~90 467.33 m,反气旋涡半径为23.92~94 791.93 m。2015年11月—12月期间,皮特凯恩岛东北部公海识别的气旋涡数量为179~208个,反气旋涡数量为236~265个;气旋涡半径为725.85~54 598.95 m,反气旋涡半径为22.70~80 372.55 m。研究结果表明,反气旋涡数量通常多于气旋涡数量,其半径也大于气旋涡的半径。气旋涡的面积主要为5×1

图4 中尺度涡气旋(蓝色)、反气旋(红色)的面积及涡数量变化趋势
Fig.4 Trends in the area of mesoscale eddy cyclones (blue) and anticyclones (red) and the number of eddies
基于GAM模型对长鳍金枪鱼CPUE与捕捞站点到最近涡边缘的相对距离、经度及纬度之间的关系进行分析,结果如
GAM变量 GAM variables | 有效自由度 edf | P | 校正决定系数 | 偏差解释率 Deviance explained/% |
---|---|---|---|---|
反气旋涡Anticyclonic eddy | 0.534 | 60.8 | ||
捕捞站点到反气旋涡的相对距离Relative distance | 8.032 | <0.05 | ||
经度Longitude | 4.508 | <0.05 | ||
纬度Latitude | 7.577 | <0.05 | ||
气旋涡 Cyclonic eddy | 0.526 | 57.7 | ||
捕捞站点到气旋涡的相对距离Relative distance | 1.000 | <0.05 | ||
经度Longitude | 3.906 | <0.05 | ||
纬度Latitude | 6.562 | <0.05 |
如

图5 反气旋涡环境下长鳍金枪鱼CPUE变化趋势
Fig.5 Variation trends of Thunnus alalunga CPUE in an anticyclonic eddy environment
在气旋涡环境中,与反气旋涡环境的波动下降趋势不同,捕捞站点到最近气旋涡边缘的相对距离对长鳍金枪鱼CPUE表现为显著的线性关系(edf=1),随着相对距离的增大,长鳍金枪鱼CPUE呈线性下降趋势。经度对长鳍金枪鱼CPUE的影响整体呈上升趋势,而纬度的降低导致长鳍金枪鱼CPUE波动下降(

图6 气旋涡环境下长鳍金枪鱼CPUE变化趋势
Fig.6 Variation trends of Thunnus alalunga CPUE in a cyclonic eddy environment

图7 长鳍金枪鱼CPUE随捕捞站点到涡中心的相对距离变化趋势
Fig.7 Variation trend of Thunnus alalunga CPUE with the relative distance from the survey station to the eddy center
横线和箱体分别代表长鳍金枪鱼单位捕捞努力量渔获量均值和标准差范围。
The horizontal lines and boxes represent the mean and standard deviation range of CPUE for albacore tuna, respectively.
本研究结合长鳍金枪鱼的渔业探捕数据,分析了捕捞站点到最近涡边缘的相对距离以及到涡中心的相对距离对南太平洋长鳍金枪鱼CPUE的影响。结果显示,长鳍金枪鱼的CPUE与捕捞站点到最近涡边缘的相对距离(气旋涡、反气旋涡)呈显著相关。随着捕捞站点到反气旋涡边缘的相对距离的增加,长鳍金枪鱼CPUE整体呈波动下降趋势。这一现象可能与反气旋涡内部复杂的流场结构及其水温、盐度等环境因素的综合作用密切相关。反气旋涡(暖涡)其内部通常表现为显著的下降流,其流动和旋转运动显著影响了海水的垂直混合特性,导致海水温度上升。这种温暖的环境降低了长鳍金枪鱼在该环境中进行温度调节所需的能量,为长鳍金枪鱼提供了适宜的生活环境,有利于其在涡旋边缘区域的聚集和觅食等行
随着捕捞站点到最近气旋涡边缘的相对距离的增加,长鳍金枪鱼CPUE逐渐下降。在气旋涡的影响范围内,气旋涡(冷涡)促使富含营养盐的深层海水上升,影响了海水中的营养盐浓度以及浮游动植物的分布范围,促进初级生产力的提高,为长鳍金枪鱼等中上层捕食者提供了丰富且多样的食物资源。而随着捕捞站点到最近气旋涡边缘相对距离的增大,这种影响逐渐减弱,进而对长鳍金枪鱼CPUE的影响逐渐下降。例如,南印度洋水域的南象海豹、东北太平洋水域的北象海豹(Mirounga angustirostris)等在气旋涡环境中表现出更频繁的潜水行为和更长的水下停留时间,觅食活动显著增多且觅食行为变得集中且高
在涡扰动范围内(0~1.5r),反气旋涡内长鳍金枪鱼CPUE明显高于气旋涡,且其最大值位于距离涡心较近的位置。相较于气旋涡扰动范围,长鳍金枪鱼在气旋涡边缘部分捕获率更高,在2.0r~2.5r达到峰值。在>2.5r时,气旋涡与反气旋涡对CPUE大小的影响未展现出显著的差异,这表明涡旋的边缘效应较弱,同时可能受到其他环境因素的干扰,需要在之后的研究中添加环境数据进一步探索。不同涡旋类型对鱼类和海洋生物的聚集效应存在显著差异。在西北大西洋海域中,HSU
本研究采用由LGUENSAT
利益冲突
作者声明本文无利益冲突
参考文献
郭刚刚, 张胜茂, 樊伟, 等. 南太平洋长鳍金枪鱼垂直活动水层空间分析[J]. 南方水产科学, 2016, 12(5): 123-130. [百度学术]
GUO G G, ZHANG S M, FAN W, et al. Spatial analysis of vertical active layer of albacore tuna (Thunnus alalunga) in the South Pacific Ocean[J]. South China Fisheries Science, 2016, 12(5): 123-130. [百度学术]
CONSOLI P, ROMEO T, BATTAGLIA P, et al. Feeding habits of the albacore tuna Thunnus alalunga (Perciformes, Scombridae) from central Mediterranean Sea[J]. Marine Biology, 2008, 155(1): 113-120. [百度学术]
DUFOUR F, ARRIZABALAGA H, IRIGOIEN X, et al. Climate impacts on albacore and bluefin tunas migrations phenology and spatial distribution[J]. Progress in Oceanography, 2010, 86(1/2): 283-290. [百度学术]
ZHOU C, HE P G, XU L X, et al. The effects of mesoscale oceanographic structures and ambient conditions on the catch of albacore tuna in the South Pacific longline fishery[J]. Fisheries Oceanography, 2020, 29(3): 238-251. [百度学术]
张国良. 基于海洋环境因子的所罗门群岛长鳍金枪鱼延绳钓渔场研究[D]. 上海: 上海海洋大学, 2023. [百度学术]
ZHANG G L. Longline fishery ground for albacore tuna in Solomon Islands based on marine environmental factors[D]. Shanghai: Shanghai Ocean University, 2023. [百度学术]
程懿麒. 基于机器学习的中西太平洋长鳍金枪鱼栖息地时空分布模型的构建和评价[D]. 上海: 上海海洋大学, 2022. [百度学术]
CHENG Y Q. Construction and evaluation of model forthe spatial and temporal distribution of albacore tuna (Thunnus alalunga) habitats in the western and central Pacific Ocean based on machine learning[D]. Shanghai: Shanghai Ocean University, 2022. [百度学术]
谢笑艳, 汪金涛, 陈新军, 等. 南印度洋长鳍金枪鱼渔获率与水深温度关系研究[J]. 南方水产科学, 2021, 17(5): 86-92. [百度学术]
XIE X Y, WANG J T, CHEN X J, et al. Study on relationship between albacore catch rate and water depth and temperature in South Indian Ocean[J]. South China Fisheries Science, 2021, 17(5): 86-92. [百度学术]
金鹏超, 余为, 武孝慈, 等. 秘鲁外海涡旋的时空分布及其与茎柔鱼资源丰度的关系分析[J]. 中国水产科学, 2023, 30(6): 753-764. [百度学术]
JIN P C, YU W, WU X C, et al. Analysis of the spatial and temporal distribution of eddies off Peru and their relationship with the abundance of jumbo flying squid, Dosidicus gigas[J]. Journal of Fishery Sciences of China, 2023, 30(6): 753-764. [百度学术]
SCALES K L, MILLER P I, EMBLING C B, et al. Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird[J]. Journal of the Royal Society Interface, 2014, 11(100): 20140679. [百度学术]
TEW KAI E, MARSAC F. Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel[J]. Progress in Oceanography, 2010, 86(1/2): 214-223. [百度学术]
杨亮, 修义瑞, 张雷, 等. 亚丁湾附近海域海洋中尺度涡的时空特征分析[J]. 海洋测绘, 2023, 43(2): 46-49. [百度学术]
YANG L, XIU Y R, ZHANG L, et al. Temporal and spatial characteristics of mesoscale eddies inthe sea area near the Gulf of Aden[J]. Hydrographic Surveying and Charting, 2023, 43(2): 46-49. [百度学术]
FLIERL G, MCGILLICUDDYD J. Mesoscaleand submesoscale physical-biological interactions[J]. The Sea, 2002, 12: 113-186. [百度学术]
KOBAYASHI D R, CHENG IJ, PARKER D M, et al. Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: characterization of a hotspot in the East China Sea and investigation of mesoscale eddies[J]. ICES Journal of Marine Science, 2011, 68(4): 707-718. [百度学术]
CHAMBAULT P, BAUDENA A, BJORNDAL K A, et al. Swirling in the ocean: immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic gyre[J]. Progress in Oceanography, 2019, 175: 345-358. [百度学术]
POLOVINA J, UCHIDA I, BALAZS G, et al. The Kuroshio Extension Bifurcation Region: a pelagic hotspot for juvenile loggerhead sea turtles[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, 53(3/4): 326-339. [百度学术]
HSU A C, BOUSTANY A M, ROBERTS J J, et al. Tuna and swordfish catch in the U.S. northwest Atlantic longline fishery in relation to mesoscale eddies[J]. Fisheries Oceanography, 2015, 24(6): 508-520. [百度学术]
COTTÉ C, PARK YH, GUINET C, et al. Movements of foraging king penguins through marine mesoscale eddies[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1624): 2385-2391. [百度学术]
BRAUN C D, GAUBE P, SINCLAIR-TAYLOR T H, et al. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2019, 116(35): 17187-17192. [百度学术]
GAUBE P, BRAUN C D, LAWSON G L, et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea[J]. Scientific Reports, 2018, 8(1): 7363. [百度学术]
WOODWORTH P A, SCHORR G S, BAIRD R W, et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra)[J]. Marine Mammal Science, 2012, 28(3): 638-647. [百度学术]
BAILLEUL F, COTTÉ C, GUINET C. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal[J]. Marine Ecology Progress Series, 2010, 408: 251-264. [百度学术]
CAMPAGNA C, ROSA PIOLA A, MARIN M R, et al. Southern elephant seal trajectories, fronts and eddies in the Brazil/Malvinas Confluence[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2006, 53(12): 1907-1924. [百度学术]
KEATES T R, HAZEN E L, HOLSER R R, et al. Foraging behavior of a mesopelagic predator, the northern elephant seal, in northeastern Pacific eddies[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2022, 189: 103866. [百度学术]
MASSIE P P, MCINTYRE T, RYAN P G, et al. The role of eddies in the diving behaviour of female southern elephant seals[J]. Polar Biology, 2016, 39(2): 297-307. [百度学术]
KEITH JOHNSON W, MILLER L A, SUTHERLAND N E, et al. Iron transport by mesoscale Haida eddies in the Gulf of Alaska[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2005, 52(7/8): 933-953. [百度学术]
LGUENSAT R, SUN M, FABLET R, et al. EddyNet: a deep neural network for pixel-wise classification of oceanic eddies[C]//Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018:1764-1767. [百度学术]
KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA: Curran Associates Inc.,2017: 971-980. [百度学术]
ZEILER M D, KRISHNAN D, TAYLOR G W, et al. Deconvolutional networks[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010:2528-2535. [百度学术]
LGUENSAT R, RJIBA S, MASON E, et al. Convolutional neural networks for the segmentation of oceanic eddies from altimetricmaps[J]. Remote Sensing, 2018, 1(1): 1-16. [百度学术]
SAIDA S J, SAHOO S P, ARI S. Deep convolution neural network based semantic segmentation for ocean eddy detection[J]. Expert Systems with Applications, 2023, 219: 119646. [百度学术]
刘启明. 基于深度学习的海洋涡旋识别方法研究[D]. 青岛: 青岛科技大学, 2022. [百度学术]
LIU Q M. Research on ocean eddies identification method based on deep learning[D]. Qingdao: Qingdao University of Science and Technology, 2022. [百度学术]
FRANÇA S, VASCONCELOS R P, FONSECA V F, etal. Predicting fish community properties within estuaries: influence of habitat type and other environmental features[J]. Estuarine, Coastal and Shelf Science, 2012, 107: 22-31. [百度学术]
FENNELL S, ROSE G. Oceanographic influences on deep scattering layers across the North Atlantic[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2015, 105: 132-141. [百度学术]
DRAGON AC, MONESTIEZ P, BAR-HEN A, et al. Linking foraging behaviour to physical oceanographic structures: southern elephant seals and mesoscale eddies east of Kerguelen Islands[J]. Progress in Oceanography, 2010, 87(1/4): 61-71. [百度学术]
JONSEN I D, MCMAHON C R, PATTERSON T A, et al. Movement responses to environment: fast inference of variation among southern elephant seals with a mixed effects model[M]. Ecology,2019, 100(1): e02566. [百度学术]
ROBINSON P W, SIMMONS S E, CROCKER D E, et al. Measurements of foraging success in a highly pelagic marine predator, the northern elephant seal[J]. Journal of Animal Ecology, 2010, 79(6): 1146-1156. [百度学术]
TEO S L H, BLOCK B A. Comparative influence of ocean conditions on yellowfin and Atlantic bluefin tuna catch from longlines in the Gulf of Mexico[J]. PLoS One, 2010, 5(5): e10756. [百度学术]
GAUBE P, BARCELÓ C, MCGILLICUDDY JR D J, et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic[J]. PLoS One, 2017, 12(3): e0172839. [百度学术]