摘要
为了探明黄鳍金枪鱼(Thunnus albacares)脊柱及附肢骨骼的发育特征,基于2022年8月15日—9月9日在菲律宾海用大型仔稚鱼网(口径1.3 m、网目0.5 mm)进行表层水平拖网所采集的黄鳍金枪鱼仔鱼样本,采用软骨-硬骨双染色透明技术,观察了黄鳍金枪鱼仔鱼(前弯曲期9尾,弯曲期12尾,后弯曲期12尾,体长3.1~8.0 mm)脊柱及附肢骨骼的早期发育。结果显示,各鳍形成顺序是胸鳍、尾鳍、第一背鳍和腹鳍、第二背鳍和臀鳍,最后为小鳍;椎体由体前部向尾部逐渐形成;髓弓由体前部向尾部和由体中部向两端生长,脉弓由体中部向两端生长;尾下骨1和2先愈合为一个整体,随后侧尾下骨和尾下骨1+2的基部软骨联合,尾下骨3和4两端愈合,尾下骨5独立;体长8.0 mm个体形成躯椎18枚,尾椎21枚,侧尾下骨1枚,尾下骨5枚,尾上骨2枚。研究表明,侧尾下骨和尾下骨愈合为黄鳍金枪鱼提供了强劲的游泳动力。本研究可作为黄鳍金枪鱼早期阶段的鉴定依据,并为其仔鱼阶段的漂流机制形成提供参考。
关键词
黄鳍金枪鱼(Thunnus albacares)隶属于鲭形目(Scombriformes)鲭科(Scombridae)金枪鱼属(Thunnus)。金枪鱼属鱼类为快速游泳的温带大洋性中上层鱼类,具有长距离洄游的习性,喜集群,广泛分布于印度洋、太平洋和大西洋的热带和亚热带海
本研究利用软骨-硬骨双染色透明技术,对黄鳍金枪鱼仔鱼脊柱与附肢骨骼的发育及其变化进行了观察和描述,旨在为黄鳍金枪鱼骨骼系统发育提供基础的科学依据,并为其早期发育阶段的移动趋向提供参考。
2022年8月15日至9月9日,在中西太平洋菲律宾海(11°N~19°N、129°E~138°E)的50个站位(水温29.66~30.60 ℃,盐度33.40~34.65),采用大型仔稚鱼网(口径1.3 m,网目0.5 mm)以平均2 kn的船速进行表层水平拖网20 min。采集的样本用5%的甲醛溶液固定。依据《日本产稚鱼图鉴

图1 黄鳍金枪鱼透明染色的样本体长分布
Fig.1 Body length frequency of stained and cleared Thunnus albacares
参考DINGERKUS
在Olympus SZX7 解剖镜及描图装置(SZX-DA)下,对黄鳍金枪鱼仔鱼的脊柱和附肢骨骼形态进行连续观察(

图2 黄鳍金枪鱼透明染色样本(后弯曲期仔鱼,体长6.4 mm)
Fig.2 Stained and cleared speciemen Thunnus albacares (Postflexion larva, 6.4 mm SL)
3.1 mm NL个体脊索透明,呈直管状,尚未分节(

图3 黄鳍金枪鱼脊柱、背臀鳍支鳍骨的发育
Fig.3 Development of vertebral column, dorsal and anal pterygiophores in Thunnus albacares
(a)体长3.1 mm;(b)体长4.3 mm;(c)体长4.9 mm;(d)体长5.3 mm;(e)体长6.0 mm;(f)体长6.4 mm;(g)体长7.2 mm;(h)体长8.0 mm;App.臀鳍近端支鳍骨;Dfpp.第一背鳍近端支鳍骨;Dp.远端支鳍骨;Dspp.第二背鳍近端支鳍骨;Flpp.小鳍近端支鳍骨;Ha.脉弓;Hs.脉棘;Na.髓弓;Nc.脊索;Ns.髓棘;Us.尾杆骨。
(a) 3.1 mm NL; (b) 4.3 mm NL; (c) 4.9 mm NL; (d) 5.3 mm NL; (e) 6.0 mm SL; (f) 6.4 mm SL; (g) 7.2 mm SL; (h) 8.0 mm SL; App. Anal fin proximal pterygiophores; Dfpp. The first dorsal fin proximal pterygiophores; Dp. Distal pterygiophores; Dspp. The second dorsal fin proximal pterygiophores; Flpp. Finlet proximal pterygiophores; Ha.Haemal arches; Hs. Haemal spines; Na. Neural arches; Nc. Notochord; Ns. Neural spines; Us. Urostyle.
4.9 mm NL个体第一背鳍近端支鳍骨最先出现,仍为软骨质(
4.4 mm NL个体脊索末端下方出现1枚侧尾下骨(Ph)和2枚尾下骨(Hy1、2,

图4 黄鳍金枪鱼尾鳍支鳍骨的发育
Fig.4 Development of caudal pterygiophores in Thunnus albacares
(a)体长4.4 mm;(b)体长4.5 mm;(c)体长4.9 mm;(d)体长5.3 mm;(e)体长5.7 mm;(f)体长6.0 mm;(g)体长6.4 mm;(h)体长7.2 mm;(i)体长8.0 mm;Ep.尾上骨;Fo.孔;Hy.尾下骨;Nc.脊索;Ph.侧尾下骨;Us.尾杆骨。
(a) 4.4 mm NL; (b) 4.5 mm NL; (c) 4.9 mm NL; (d) 5.3 mm NL; (e) 5.7 mm NL; (f) 6.0 mm SL; (g) 6.4 mm SL; (h) 7.2 mm SL; (i) 8.0 mm SL; Ep. Epurals; Fo. Foramen; Hy. Hypurals; Nc. Notochord; Ph. Parhypural; Us. Urostyle.
3.1 mm NL个体软骨质的匙骨、乌喙骨-肩胛骨软骨出现(

图5 黄鳍金枪鱼肩带的发育
Fig.5 Development of pectoral girdle in Thunnus albacares
(a)体长3.1 mm;(b)体长3.9 mm;(c)体长4.3 mm;(d)体长4.5 mm;(e)体长5.3 mm;(f)体长5.7 mm;(g)体长8.0 mm;Cl.匙骨;Co.乌喙骨;Co-Sca.乌喙骨-肩胛骨软骨;Fp.支鳍骨原基;Pcl.后匙骨;Pot.后颞骨;Sc.肩胛骨;Scf.肩胛骨孔;Scl.上匙骨。
(a) 3.1 mm NL; (b) 3.9 mm NL; (c) 4.3 mm NL; (d) 4.5 mm NL; (e) 5.3 mm NL; (f) 5.7 mm NL; (g) 8.0 mm SL; Cl. Cleithrum; Co. Coracoid; Co-Sca. Coracoid-scapula cartilage; Fp. Fin plate; Pcl. Postcleithrum; Pot. Posttemporal; Sc. Scapula; Scf. Scapula foramen; Scl. Supracleithrum.
4.9 mm NL个体腹鳍出现软骨质的细小支鳍骨原基(

图6 黄鳍金枪鱼腰带的发育
Fig.6 Development of pelvic girdle in Thunnus albacares
(a)体长4.9 mm;(b)体长5.3 mm;(c)体长6.1 mm;(d)体长7.2 mm;(e)体长8.0 mm;Dw.外侧翼;Fp.支鳍骨原基;Iw.内侧翼。
(a) 4.9 mm NL; (b) 5.3 mm NL; (c) 6.1 mm NL; (d) 7.2 mm SL; (e) 8.0 mm SL; Dw. Dorsal wing; Fp. Fin plate; Iw. Internal wing.
仔稚鱼脊柱与附肢骨骼的发育与其形态结构、生态适应和功能需求以及运动方式密切相
脊椎骨是支撑鱼体的重要组成部分,不同鱼类的脊椎骨数目有所差异。同属鲭科的日本鲭(Scomber japonicus)31枚,狐鲣(Sarda sarda)50枚,大耳马鲛(Scomberomorus cavalla)51枚,沙氏刺鲅(Acanthocybium solandri)63
鱼类各鳍早期发育的顺序一般是胸鳍最先形成,其次是尾鳍,背臀鳍,腹鳍最后形成。例如,有明银
利益冲突
作者声明本文无利益冲突。
参考文献
伍汉霖, 钟俊生. 中国海洋及河口鱼类系统检索[M]. 北京: 中国农业出版社, 2021: 1172. [百度学术]
WU H L, ZHONG J S. Key to marine and estuarial fishes of China[M]. Beijing: China Agriculture Press, 2021: 1172. [百度学术]
ISSF. Status of the World fisheries for tuna[R]. Pittsburgh: International Seafood Sustainability Foundation, 2024: 40. [百度学术]
SAMBAH A B, NOOR’IZZAH A, INTYAS C A, et al. Analysis of the effect of ENSO and IOD on the productivity of yellowfin tuna (Thunnus albacares) in the South Indian Ocean, East Java, Indonesia[J]. Biodiversitas Journal of Biological Diversity, 2023, 24(5): 2689-2700. [百度学术]
刘志强,郭绍健,王禹程,等. 中西太平洋金枪鱼延绳钓钓钩深度分布及其影响因素[J].上海海洋大学学报,2024,33(4):1020-1030. [百度学术]
LIU Z Q, GUO S J, WANG Y C, et al. Hook depth distribution and influencing factors of tuna longline fishing in Western and Central Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):1020-1030. [百度学术]
李秀超,林琴琴,陈作志,等. 基于LeMaRns模型评估印度洋金枪鱼渔业对大洋生态系统的影响[J]. 上海海洋大学学报,2023,32(1):203-216. [百度学术]
LI X C,LIN Q Q, CHEN Z Z,et al. Impact of Indian Ocean tuna fisheries on pelagic ecosystem based on LeMaRns model[J]. Journal of Shanghai Ocean University,2023,32(1):203-216. [百度学术]
崔明远, 麻秋云, 田思泉, 等. 自然死亡和亲体补充关系对黄鳍金枪鱼资源评估的影响[J]. 海洋学报, 2023, 45(3): 40-51. [百度学术]
CU M Y, MA Q Y, TIAN S Q, et al. Influence of natural mortality and stock-recruitment relationship on yellowfin tuna (Thunnus albacares) stock assessment[J]. Haiyang Xuebao, 2023, 45(3): 40-51. [百度学术]
黄雯晓, 符文雅, 潘帅, 等. 南海黄鳍金枪鱼性腺发育形态观察和组织学研究[J]. 水产学杂志, 2024, 37(2): 98-106. [百度学术]
HUANG W X, FU W Y, PAN S, et al. Morphology and histology characteristics of gonads of yellowfin tuna (Thunnus albacares) at different developmental stages in South China Sea[J]. Chinese Journal of Fisheries, 2024, 37(2): 98-106. [百度学术]
PACICCO A E, BROWN-PETERSON N J, MURIE D J, et al. Reproductive biology of yellowfin tuna (Thunnus albacares) in the northcentral U.S. Gulf of Mexico[J]. Fisheries Research, 2023, 261: 106620. [百度学术]
闫路路, 郭杰匀, 赵超, 等. 不同规格黄鳍金枪鱼红肌转录组比较分析[J]. 海洋渔业, 2024, 46(1): 1-10. [百度学术]
YAN L L, GUO J Y, ZHAO C, et al. Comparative analysis of transcriptome in red muscles of Thunnus albacares of different sizes[J]. Marine Fisheries, 2024, 46(1): 1-10. [百度学术]
戴世明, 周胜杰, 于刚, 等. 金枪鱼养殖研究进展[J]. 中国渔业质量与标准, 2023, 13(1): 51-59. [百度学术]
DAI S M, ZHOU S J, YU G, et al. Research progress on the culture of tuna[J]. Chinese Fishery Quality and Standards, 2023, 13(1): 51-59. [百度学术]
D’ALESSANDRO E K, SPONAUGLE S, COWEN R K. Selective mortality during the larval and juvenile stages of snappers (Lutjanidae) and great barracuda Sphyraena barracuda[J]. Marine Ecology Progress Series, 2013, 474: 227-242. [百度学术]
OVERTON A S, JONES N A, RULIFSON R. Spatial and temporal variability in instantaneous growth, mortality, and recruitment of Larval River herring in Tar-Pamlico River, North Carolina[J]. Marine and Coastal Fisheries Dynamics Management, and Ecosystem Science, 2012, 4(1): 218-227. [百度学术]
LEIS J M. Vertical and horizontal distribution of fish larvae near coral reefs at Lizard Island, Great Barrier Reef[J]. Marine Biology, 1986, 90(4): 505-516. [百度学术]
MATSUMOTO W M, AHLSTROM E H, JONES S, et al. On the clarification of larval tuna identification particularly in the genus Thunnus[J]. Fishery Bulletin, 1972, 70(1): 1-12. [百度学术]
KAJI T, TANAKA M, OKA M, et al. Growth and morphological development of laboratory-reared yellowfin tuna Thunnus albacares larvae and early juveniles, with special emphasis on the digestive system[J]. Fisheries Science, 1999, 65(5): 700-707. [百度学术]
BOEHLERT G W, MUNDY B C. Vertical and onshore-offshore distributional patterns of tuna larvae in relation to physical habitat features[J]. Marine Ecology Progress Series, 1994, 107: 1-13. [百度学术]
BROMHEAD D, SCHOLEY V, NICOL S, et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares)[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 113: 268-279. [百度学术]
KIM Y S, DELGADO D I, CANO I A, et al. Effect of temperature and salinity on hatching and larval survival of yellowfin tuna Thunnus albacares[J]. Fisheries Science, 2015, 81(5): 891-897. [百度学术]
POTTHOFF T. Osteological development and variation in young tunas, genus Thunnus (Pisces, Scombridae), from the Atlantic Ocean[J]. Fishery Bulletin, 1974, 72(2): 563-588. [百度学术]
OKIYAMA M. An atlas of the early stage fishes in Japan[M]. 2nd ed. Kanagawa: Tokai University Press, 2014: 1385-1046. [百度学术]
KENDALL JR A W, AHLSTROM E H, MOSER H G. Early life history stages of fishes and their characters[M]//MOSER H G, RICHARDS W J, COHEN D M, et al. Ontogeny and Systematics of Fishes. The American Society of Ichthyologists Herpetologists. Lawrence: Allen Press Inc., 1984: 11-22. [百度学术]
DINGERKUS G, UHLER L D. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage[J]. Stain Technology, 1977, 52(4): 229-232. [百度学术]
黄洁丽, 胡芬, 宋小晶, 等. 矛尾虾虎鱼仔稚鱼脊柱及附肢骨骼系统的发育观察[J]. 上海海洋大学学报, 2022, 31(1): 71-85. [百度学术]
HUANG J L, HU F, SONG X J, et al. Development of the vertebral column and appendicular skeleton in larvae and juveniles of Chaeturichthys stigmatias[J]. Journal of Shanghai Ocean University, 2022, 31(1): 71-85. [百度学术]
于超勇, 官曙光, 于道德, 等. 大泷六线鱼仔稚鱼脊柱及附肢骨骼系统的发育观察[J]. 大连海洋大学学报, 2020, 35(1): 47-55. [百度学术]
YU C Y, GUAN S G, YU D D, et al. Development of vertebral column and appendicular skeleton in larvae and juveniles of fat greenling Hexagrammos otakii[J]. Journal of Dalian Ocean University, 2020, 35(1): 47-55. [百度学术]
王秋荣, 倪玥莹, 林利民, 等. 大黄鱼仔稚鱼脊柱、胸鳍及尾鳍骨骼系统的发育观察[J]. 水生生物学报, 2010, 34(3): 467-472. [百度学术]
WANG Q R, NI Y Y, LIN L M, et al. Development of the vertebral column and the pectoral and caudal fins in larvae of the large yellow croaker Larimichthys crocea (Richardson)[J]. Acta Hydrobiologica Sinica, 2010, 34(3): 467-472. [百度学术]
DASILAO J C, YAMAOKA K. Development of the vertebral column and caudal complex in a flyingfish, Parexocoetus mento mento (Teleostei: Exocoetidae)[J]. Ichthyological Research, 1998, 45(3): 303-308. [百度学术]
周胜杰, 杨蕊, 于刚, 等. 鲔脊椎骨与附肢骨骼描述[J]. 南方水产科学, 2022, 18(1): 84-89. [百度学术]
ZHOU S J, YANG R, YU G, et al. Description of Euthynnus affinis vertebrae and appendages[J]. South China Fisheries Science, 2022, 18(1): 84-89. [百度学术]
杨蕊, 于刚, 胡静, 等. 青干金枪鱼骨骼系统研究[J]. 南方水产科学, 2021, 17(2): 36-43. [百度学术]
YANG R, YU G, HU J, et al. Research on skeleton system of Thunnus tonggol[J]. South China Fisheries Science, 2021, 17(2): 36-43. [百度学术]
FIERSTINE H L, WALTERS V. Studies in locomotion and anatomy of scombroid fishes[J]. Memoirs of the Southern California Academy of Sciences, 1968, 6: 1-31. [百度学术]
POTTHOFF T, KELLEY S, JAVECH J C. Cartilage and bone development in scombroid fishes[J]. Fishery Bulletin, 1986, 84(3): 647-678. [百度学术]
POTTHOFF T. Development and structure of the caudal complex, the vertebral column, and the pterygiophores in the blackfin tuna (Thunnus atlanticus, Pisces, Scombridae)[J]. Bulletin of Marine Science, 1975, 25(2): 205-231. [百度学术]
李仲辉, 杨太有. 大口黑鲈和尖吻鲈骨骼系统的比较研究[J]. 动物学报, 2001, 47(s1): 110-115. [百度学术]
LI Z H, YANG T Y. Studies on osteology of Micropterus salmoides (Lacepede) and Lates calcarifer (Bloch)[J]. Acta Zoologica Sinica, 2001, 47(s1): 110-115. [百度学术]
陈渊戈, 夏冬, 钟俊生, 等. 刀鲚仔稚鱼脊柱和附肢骨骼发育[J]. 上海海洋大学学报, 2011, 20(2): 217-223. [百度学术]
CHEN Y G, XIA D, ZHONG J S, et al. Development of the vertebral column and the appendicular skeleton in the larvae and juveniles of Coilia nasus[J]. Journal of Shanghai Ocean University, 2011, 20(2): 217-223. [百度学术]
吴尘艳, 唐鹏彦, 钟俊生, 等. 棘头梅童鱼仔稚鱼脊柱及附肢骨骼的早期发育[J]. 中国水产科学, 2022, 29(10): 1500-1509. [百度学术]
WU C Y, TANG P Y, ZHONG J S, et al. Development of vertebral column and appendicular skeleton in Collichthys lucidus larvae and juveniles[J]. Journal of Fishery Sciences of China, 2022, 29(10): 1500-1509. [百度学术]
王晓东, 何鸣笛, 曾娇, 等. 杭州湾北部有明银鱼仔稚鱼脊柱和附肢骨骼发育研究[J]. 上海海洋大学学报, 2018, 27(6): 930-937. [百度学术]
WANG X D, HE M D, ZENG J, et al. Development of the vertebral column and the appendicular skeleton in the larvae and juveniles of Salanx ariakensis in the north of Hangzhou Bay[J]. Journal of Shanghai Ocean University, 2018, 27(6): 930-937. [百度学术]
邓平平, 严银龙, 施永海. 褐菖鲉仔稚鱼脊柱及附肢骨骼系统的早期发育[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 735-742. [百度学术]
DENG P P, YAN Y L, SHI Y H. Early development of the vertebral column and appendicular skeleton in Sebastiscus marmoratus larvae[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(6): 735-742. [百度学术]