摘要
为探究加利福尼亚标灯鱼(Symbolphorus californensis)的基础生物学信息,本研究根据2022年6—7月在西北太平洋公海海域采集的175尾样本,通过耳石微结构的观察,对其年龄和生长进行研究分析。结果表明,加利福尼亚标灯鱼的矢耳石呈卵圆形,背缘有波状浅沟,听沟明显,纵截面微观结构显示出3个生长区:中心区(CZ)、中间区(MZ)和外部区(EZ),轮纹数分别为41~62、38~45和157~465;根据生长纹计数,计算日龄为242~550 d,优势日龄组为301~400 d,占91.46%;根据捕获时间推算样本孵化时间约为2021年3—8月,其中高峰孵化日期约为2021年5—6月;赤池信息准则分析显示,最适生长方程为贝塔朗菲模型(von Bertalanffy): Lt=146.325×{1-exp[-0.01×(t-229.392)]};此外,研究还表明加利福尼亚标灯鱼的生长纹具有明显的月球周期性,即在满月期间具有更窄的生长纹宽度。研究结果揭示了加利福尼亚标灯鱼的生活史特征,为日后资源利用提供科学依据。
加利福尼亚标灯鱼(Symbolphorus californensis)属典型的跨太平洋过渡水域的灯笼鱼科(Myctophidae)种类,主要分布于日本近海至北太平
自1971年PANNELL
研究所用加利福尼亚标灯鱼样品来自上海海洋大学“淞航”号于2022年6月19日—7月12日在西北太平洋152°E~160°E和40°N~43°N海域进行远洋渔业资源综合调查时获得的样品(

图1 西北太平洋加利福尼亚标灯鱼采集站点
Fig.1 Sampling localities of Symbolophorus californiensis of Northwest Pacific Ocean
基于自然资源部标准地图服务网站 GS(2021)5433号标准地图为底图,底图边界无修改。
The figure is based on the standard map GS (2021)5433 in the Standard Map Service website of Ministry of Natural Resources of the People's Republic of China, with no modifications of the boundaries in the standard map.
对175尾加利福尼亚标灯鱼进行生物学参数的测量,包括体长、叉长(精确至0.1 mm)及体质量(精确至0.1 g),数值见
日期 Date | 站点 Sampling localities | 纬度 Latitude | 经度 Longitude | 样本数 Sample number/尾 | 叉长 Fork length/mm | 体质量 Body mass/g | ||
---|---|---|---|---|---|---|---|---|
范围 Range | 平均值±标准差 Mean±SD | 范围 Range | 平均值±标准差 Mean±SD | |||||
2022.06.19 | T6 | 40°50′N | 152°40′E | 67 | 78~134 | 107.0±10.2 | 4~18 | 11.6±2.6 |
2022.06.27 | T13 | 43°36′N | 157°13′E | 21 | 87~110 | 98.5±6.2 | 7~18 | 10.5±3.3 |
2022.06.30 | T15 | 40°08′N | 158°31′E | 6 | 89~111 | 97.2±7.9 | 8~18 | 10.2±3.9 |
2022.07.12 | T23 | 42°00′N | 160°00′E | 81 | 85~123 | 96.3±7.8 | 3~16 | 9.1±2.6 |
取出耳石,将其水平黏附于载玻片上,用1 200和4 000目的水磨砂纸在研磨机(Struers labopol-20)上进行打磨,在此过程中不断在显微镜下观察,以防打磨不均或过度打磨导致样本损坏;最后使用氧化铝(Al2O3)水溶剂在抛光绒布上进行抛光。制作好的切片在显微镜下用CCD装置拍照保存,使用Photoshop 2018软件将不同区域的图片进行拼接,生成可进行轮纹读取的图片格式。
轮纹读取从中间区(Middle zone, MZ)外的第一条轮纹开始,直至耳石外缘,记为外部区(External zone, EZ)日龄;中心区(Central zone, CZ)及中间区选取打磨清楚的样本进行单独计数。读取过程中,每个耳石轮纹读取3次,每次计数的结果需与平均值的差值小于5
叉长与体质量之间的关系使用幂函数进行拟合:
W=a | (1) |
式中:W为体质量,g;L为叉长,mm;a、b为回归系数。当b=3时,鱼类的生长是匀速的,当b>3或b<3时,分别是正异速或负异速生
生长方程采用线性模型、指数模型、幂函数模型、von Bertalanff
线性模型:
Lt =a+bt | (2) |
指数模型:
Lt =a | (3) |
幂函数模型:
Lt =a | (4) |
von Bertalanffy:
Lt = L∞{1-exp[-k(t-t0)]} | (5) |
Gompertz:
Lt = L∞exp{-exp[-G(t-ti)]} | (6) |
Logistic:
Lt =L∞/{1+exp[-K(t-tj)]} | (7) |
式中:Lt为t龄时的叉长;t为日龄;a、b为参数;L∞为理论渐近长度;k为生长系数;t0为L = 0时的理论年龄;ti为生长曲线拐点处的年龄,即绝对生长率开始下降的年龄;G为生长发生拐点时的年龄;tj为瞬时生长率系数;K为指数增长率参数。使用最大似然估计
IAIC = -2lnL+2P | (8) |
式中:IAIC为赤池信息量准则AIC值;lnL为似然函数;P为生长模型的参数个数;选取AIC值最小的模型为最适生长模
通过将最适增长模型转换为微分形式来确定增长
线性模型:
dL/dt = b | (9) |
指数模型:
dL/dt =ab | (10) |
幂函数模型:
dL/dt =ab | (11) |
von Bertalanffy:
dL/dt =L∞kexp[-k(t-t0)] | (12) |
Gompertz:
dL/dt = L∞Gexp[-G(t-ti)]exp{-exp[-G(t-ti)]} | (13) |
Logistic:
dL/dt = {L∞Kexp[-K(t-ti)]}/{1+exp[-K(t-ti)] | (14) |
式中:dL/dt为生长速率。
使用绝对生长速率(Absolute growth rate, AGR)分析加利福尼亚标灯鱼叉长和体质量的生长变
RAGR = (R2-R1)/(t2-t1) | (15) |
式中:RAGR为绝对生长速率AGR,mm/d或g/d;R2为t2日龄样本的平均叉长或体质量,mm或g;R1为t1日龄样本的平均叉长或体质量,mm或g;t1、t2为日龄,d。
由

图2 加利福尼亚标灯鱼叉长组成及体质量组成
Fig.2 Fork length composition and body mass composition of Symbolophorus californiensis

图3 加利福尼亚标灯鱼叉长与体质量关系
Fig.3 Relationship between fork length and body mass of Symbolophorus californiensis
加利福尼亚标灯鱼的矢状耳石呈卵圆形,背缘有波状浅沟,听沟明显(

图4 加利福尼亚标灯鱼耳石
Fig.4 Sagittal otoliths of Symbolophorus californiensis

图5 加利福尼亚标灯鱼耳石微结构
Fig.5 Microstructure of sagittal otoliths in Symbolophorus californiensis
加利福尼亚标灯鱼耳石轮纹计数显示,日龄为250~548 d,平均日龄为389 d,301~400 d为优势日龄组,占91.46%,251~300 d仅占1.22%,401~550 d占7.32%。其中,中心区域的轮纹数为41~62轮,平均为 46 轮;中间区域的轮纹数为38~45轮,平均为41轮;外部区域的轮纹数为157~465轮,平均为303轮。根据捕获时间逆推样本孵化时间约为 2021年3月至2021年8月,其中高峰孵化时间约为2021年5月至6月(

图6 加利福尼亚标灯鱼日龄组成及孵化时间
Fig.6 Distribution of age and hatching month for Symbolophorus californiensis
对加利福尼亚标灯鱼的日龄和叉长用3种生长模型进行拟合,参数使用最小二乘法来估算,最小AIC分析显示 von Bertalanffy为最佳生长模型(
生长方程 Growth function | L∞/mm | a | b | K | G | t0 | ti | AIC | |
---|---|---|---|---|---|---|---|---|---|
线性模型 | * | 1.48 | 155.13 | * | * | * | * | 0.35 | 106.67 |
指数模型 | * | 187.90 | 0.01 | * | * | * | * | 0.34 | 108.29 |
幂函数模型 | * | 155.79 | 0.14 | * | * | * | * | 0.12 | 130.32 |
von Bertalanffy | 146.32 | * | * | 0.01 | * | 229.39 | * | 0.97 | -26.66 |
Gompertz | 107.21 | * | * | * | 0.33 | * | 221.64 | 0.90 | -21.06 |
Logistic | 107.06 | * | * | 0.03 | * | 227.83 | * | 0.90 | -15.76 |
注: ∗表示公式中无该项参数。
Notes: * represents this parameter does not exist in this formula.

图7 加利福尼亚标灯鱼叉长生长曲线
Fig.7 Relationship between age and fork length of Symbolophorus californiensis
求导结果显示,叉长83 mm,日龄200 d时,生长率最大(1.92 mm/d),见

图8 加利福尼亚标灯鱼叉长-日龄绝对生长速率图
Fig.8 AGR of fork length-age of Symbolophorus californiensis
从4个站点随机选取20个样品进行日轮计数及分区生长纹测量,分析发现样本生长过程存在两个生长高峰期(

图9 加利福尼亚标灯鱼4个站点耳石生长纹与月周期关系
Fig.9 Changes in the 4-sampling localities of increment widths from juvenile to adult stages in relation to back calculated lunar phase of Symbolophorus californiensis
●.新月;○.满月;箭头表示满月期间较窄的生长纹宽度。
●. New moon ; ○.Full moon;Arrows indicate narrower increment widths during the full moon period.

图10 加利福尼亚标灯鱼耳石与月周期微结构特征
Fig.10 Lunar periodicity in otolith microstructure of Symbolophorus californiensis
站点 Sample localities | 8月 August | 9月 September | 10月 October | 11月 November | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
满月 Full moon | 新月 New moon | 比率 Rate | 满月 Full moon | 新月 New moon | 比率 Rate | 满月 Full moon | 新月 New moon | 比率 Rate | 满月 Full moon | 新月 New moon | 比率 Rate | |
T6 | 5.51 | 5.75 | 0.96 | 5.49 | 8.35 | 0.66 | 8.08 | 9.98 | 0.81 | 6.89 | 7.63 | 0.90 |
T13 | 8.21 | 8.40 | 0.98 | 7.99 | 12.08 | 0.66 | 9.9 | 5.12 | 1.93 | 8.72 | 9.95 | 0.88 |
T15 | 9.03 | 8.48 | 1.06 | 8.18 | 8.93 | 0.92 | 7.53 | 7.84 | 0.96 | 7.54 | 7.69 | 0.98 |
T23 | 11.41 | 13.03 | 0.88 | 8.13 | 9.36 | 0.69 | 9.73 | 11.52 | 0.84 | 7.24 | 8.79 | 0.82 |
根据加利福尼亚标灯鱼耳石中心区域生长纹计数显示,加利福尼亚标灯鱼幼鱼发育所需时间为41~62 d,平均为(46.3±3.8)d,这比黑潮-亲潮过渡区的加利福尼亚标灯鱼的30~64 d,平均为(48.0±6.3)d略
耳石中间区域生长纹计数显示,加利福尼亚标灯鱼由幼鱼发育为成鱼所需时间为38~45 d,平均为(41±8.8) d,这与黑潮-亲潮过渡带样本的23~61 d,平均为(41±8.2) d接近。TAKAGI

图11 加利福尼亚标灯鱼耳石中间区微结构特征
Fig.11 MZ in otolith microstructure of Symbolophorus californiensis
根据GARTNE
由于部分加利福尼亚标灯鱼样本尾鳍受损,故使用叉长代替体长进行生长方程拟合。其中,叉长与体质量关系呈指数关系,这种关系也适用于描述其他鱼类的体长与体质量之间的关
由最佳生长方程可知,本研究海域加利福尼亚标灯鱼理论渐进叉长(L∞=146.325 mm)高于黑潮-亲潮过渡带的理论渐进体长(L∞=128 mm)。这可能是因为TAKAGI
本研究中,春季产卵群体与夏季产卵群体的生长速率相似,平均生长速率为0.27 mm/d,高于黑潮-亲潮海域的加利福尼亚标灯
LINKOWSKI
出现月球周期性的另一种解释是由于满月时的光照,浮游动物可能分散在水面,从而降低了食物的可获得
西北太平洋公海海域加利福尼亚标灯鱼寿命一般为1~2龄,孵化时间主要集中在5—6月,生长符合von Bertalanffy模型,表明本研究调查区域内的样本与黑潮-亲潮过渡带的加利福尼亚标灯鱼的年龄与生长特性具有相似性。西北太平洋公海海域加利福尼亚标灯鱼生长纹具有明显的月球周期性,在满月期生长速率减慢,新月期生长速率增加,该结果与闪光灯笼鱼和粗鳞灯笼鱼相似。本实验中,我们发现耳石微结构的中间区域轮纹间距存在显著的宽度差异,这个区域恰好是鱼类从幼鱼成长为成鱼且食性转变的关键时期,后续研究可通过连续采样法来验证TAKAGI
致谢
感谢所有参与调查以及样品采集和鉴定的老师、同学以及“淞航号”全体工作人员及船员。
利益冲突
作者声明本文无利益冲突。
参考文献
WILLIS J M, PEARCY W G, PARIN N V. Zoogeography of midwater fishes in the Subarctic Pacific[J]. Bulletin of the Ocean Research Institute, University of Tokyo, 1988, 26: 79-142. [百度学术]
SASSA C, KAWAGUCHI K, KINOSHITA T, et al. Assemblages of vertical migratory mesopelagic fish in the transitional region of the western North Pacific[J]. Fisheries Oceanography, 2002, 11(4): 193-204. [百度学术]
TAKAGI K, YATSU A, MOKU M, et al. Age and growth of lanternfishes, Symbolophorus californiensis and Ceratoscopelus warmingii(Myctophidae), in the Kuroshio-Oyashio Transition Zone[J]. Ichthyological Research, 2006, 53(3):281-289. [百度学术]
WATANABE H, MOKU M, KAWAGUCHI K, et al. Diel vertical migration of myctophid fishes(Family Myctophidae) in the transitional waters of the western North Pacific[J]. Fisheries Oceanography, 1999, 8(2): 115-127. [百度学术]
YATSU A, SASSA C, MOKU M, et al. Night-time vertical distribution and abundance of small epipelagic and mesopelagic fishes in the upper 100m layer of the Kuroshio-Oyashio Transition Zone in Spring[J]. Fisheries Science, 2005, 71(6): 1280-1286. [百度学术]
TAKAGI K, YATSU A, ITOH H, et al. Comparison of feeding habits of myctophid fishes and juvenile small epipelagic fishes in the western North Pacific[J]. Marine Biology, 2009, 156(4): 641-659. [百度学术]
WALKER W A, JONES L L. Food habits of northern right whale dolphin, Pacific white-sided dolphin and northern, fur seal caught in the high seas driftnet fisheries of the North Pacific Ocean, 1990[J]. Bulletin, 1993, 53: 285-295. [百度学术]
YONEZAKI S, KIYOTA M, BABA N, et al. Size distribution of the hard remains of prey in the digestive tract of northern fur seal(Callorhinus ursinus) and related biases in diet estimation by scat analysis[J]. Mammal Study, 2003, 28(2): 97-102. [百度学术]
WATANABE H, KUBODERA T, ICHII T, et al. Feeding habits of neon flying squid Ommastrephes bartramii in the transitional region of the central North Pacific[J]. Marine Ecology Progress, 2004, 266: 173-184. [百度学术]
刘必林,刘庭羽,宋林玮. 西北太平洋公海柔鱼和日本爪乌贼个体发育期营养生态位变化分析[J]. 上海海洋大学学报,2024,33(4):868-877. [百度学术]
LIU B L,LIU T Y, SONG L W. Analysis of trophic niche changes during the individual developmental period of Ommastrephes bartramii and Onychoteuthis borealijaponicus in the high sea of Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):868-877. [百度学术]
刘庭羽,张嘉琦,刘必林. 西北太平洋公海两种大洋性鱿鱼营养生态位分析[J]. 上海海洋大学学报,2024,33(4):878-887. [百度学术]
LIU T Y, ZHANG J Q, LIU B L. Trophic niche analysis of two species of Oceanic squid in the high sea of Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University,2024,33(4):878-887. [百度学术]
PRIEDE I G. Deep-sea fishes: biology, diversity, ecology and fisheries[M]. Cambridge: Cambridge University Press,2017. [百度学术]
PANNELLA G. Fish otoliths: daily growth layers and periodical patterns[J]. Science, 1971, 173(4002): 1124-1127. [百度学术]
GARTNER JR J V. Life histories of three species of lantern fishes(Pisces: Myctophidae) from the eastern Gulf of Mexico:Ⅰ-Morphological and microstructural analysis of sagittal otoliths[J]. Marine Biology, 1991, 111(1): 11-20. [百度学术]
BROTHERS E B, MCFARLAND W N. Correlations between otolith microstructure, growth and life history transitions in newly recruited French grunts(Haemulon flavolineatum)[J]. Rapp. pV. Reun. Cons. Int. Explor. Mer, 1981, 178: 369-374. [百度学术]
RE P. Evidence of daily and hourly growth in pilchard larvae based on otolith growth increments, Sardina pilchardus(Walbaum, 1792)[J]. Cybium: International Journal of Ichthyology, 1984, 8(1): 33-38. [百度学术]
GIRAGOSOV V, OVCHAROV O P. Age and growth of the lantern fish Myctophum nitidulum(Myctophidae) from the tropical Atlantic[J]. Journal of Ichthyology,1992, 32(6): 34-42. [百度学术]
LINKOWSKI T B. Lunar rhythms of vertical migrations coded in otolith microstructure of North Atlantic lanternfishes, genus Hygophum(Myctophidae)[J]. Marine Biology, 1996, 124(4): 495-508. [百度学术]
刘必林, 陈新军, 钟俊生. 采用耳石研究印度洋西北海域鸢乌贼的年龄、生长和种群结构[J]. 大连水产学院学报, 2009, 24(3): 206-212. [百度学术]
LIU B L, CHEN X J, ZHONG J S. Age, growth and population structure of squid Sthenoteuthis oualaniensis in northwest Indian Ocean by statolith microstructure[J]. Journal of Dalian Fisheries University, 2009, 24(3): 206-212. [百度学术]
FROESE R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations[J]. Journal of Applied Ichthyology, 2006, 22(4): 241-253. [百度学术]
VON BERTALANFFY L. A quantitative theory of organic growth(inquires on growth lawsII)[J]. Human Biology, 1938, 10: 181-213. [百度学术]
BEVERTON R J H, HOLT S J. On the dynamics of exploited fish populations[Z]. London:Fisheries Investigations,1957. [百度学术]
GOMPERTZ B. On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies[J]. Proceedings of the Royal Society of London, 1815, 115: 515-585. [百度学术]
SMART J J, CHIN A, TOBIN A J, et al. Multimodel approaches in shark and ray growth studies: strengths, weaknesses and the future[J]. Fish and Fisheries, 2016, 17(4): 955-971. [百度学术]
TJØRVEK M C, TJØRVE E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the Unified-Richards family[J]. PLoS One, 2017, 12(6): e0178691. [百度学术]
CHEN X J, LU H J, LIU B L, et al. Age, growth and population structure of jumbo flying squid, Dosidicus gigas, based on statolith microstructure off the Exclusive Economic Zone of Chilean waters[J]. Journal of the Marine Biological Association of the United Kingdom, 2011, 91(1): 229-235. [百度学术]
MANGEL M, QUINN, T J, DERISO R B. Quantitative fish dynamics[J]. Quarterly Review of Biology, 1999, 2(1): 286-287. [百度学术]
BAŞUSTAN, BAŞUSTA A,TIRAŞIN E M, et al. Age and growth of the blackchin guitarfish Glaucostegus cemiculus(Geoffroy Saint-Hilaire, 1817) from Iskenderun Bay (Northeastern Mediterranean)[J]. Journal of Applied Ichthyology, 2020, 36(6): 880-887. [百度学术]
ZHANG J, WANG Y, CHEN Z Z, et al. Age and growth of Ceratoscopelus warmingii(Myctophidae) in the South China Sea based on sagittal otolith microstructure[J]. Marine Biology Research, 2021, 17(7/8): 733-743. [百度学术]
刘必林, 刘娜, 李建华, 等. 智利外海茎柔鱼角质颚微结构及其年龄与生长研究[J]. 南方水产科学, 2020, 16(1): 62-68. [百度学术]
LIU B L, LIU N, LI J H, et al. Beak microstructure and its application in age and growth study of Dosidicus gigas in open sea of Chile[J]. South China Fisheries Science, 2020, 16(1): 62-68. [百度学术]
HAYASHI A, KAWAGUCHI K, WATANABE H, et al. Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum(Pisces: Myctophidae)[J]. Fisheries Science, 2001, 67(5): 811-817. [百度学术]
BYSTYDZIEŃSKA Z E, PHILLIPS A J, LINKOWSKI TB. Larval stage duration, age and growth of blue lanternfish Tarletonbeania crenularis(Jordan and Gilbert, 1880) derived from otolith microstructure[J]. Environmental Biology of Fishes, 2010, 89(3/4): 493-503. [百度学术]
CARUSO M J, GAWARKIEWICZ G G, BEARDSLEY R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559-575. [百度学术]
SASSA C. Feeding ecology of Symbolophorus californiensis larvae (Teleostei: Myctophidae) in the southern transition region of the western North Pacific[J]. Journal of the Marine Biological Association of the United Kingdom, 2010, 90(6): 1249-1256. [百度学术]
EVANS B I, BROWMAN H I. Variation in the development of the fish retina[J]. American Fisheries Society Symposium, 2004, 40: 145-166. [百度学术]
SASSA C, KAWAGUCHI K, TAKI K. Larval mesopelagic fish assemblages in the Kuroshio-Oyashio transition region of the western North Pacific[J]. Marine Biology, 2007, 150(6): 1403-1415. [百度学术]
RODRÍGUEZ-GRAÑAL, CASTRO L, LOUREIRO M, et al. Feeding ecology of dominant larval myctophids in an upwelling area of the Humboldt Current[J]. Marine Ecology Progress Series, 2005, 290: 119-134. [百度学术]
LINKOWSKI T B. Otolith microstructure and growth patterns during the early life history of lanternfishes (Familiy Myctophidae)[J]. Canadian Journal of Zoology, 1991, 69(7): 1777-1792. [百度学术]
GARTNER JR J V. Life histories of three species of lanternfishes(Pisces:Myctophidae) from the eastern Gulf of Mexico:Ⅱ-Age and growth patterns[J]. Marine Biology, 1991, 111(1): 21-27. [百度学术]
SUTHERS I M. Spatial variability of recent otolith growth and RNA indices in pelagic juvenile Diaphus kapalae(myctophidae): an effect of flow disturbance near an island?[J]. Marine and Freshwater Research, 1996, 47(2): 273-282. [百度学术]
MOKU M, HAYASHI A, MORI K, et al. Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender-type spp.[J]. Journal of Fish Biology, 2005, 67(5): 1481-1485. [百度学术]
SASSA C, TAKASUKA A. Distribution of Symbolophorus californiensis(Teleostei: Myctophidae) in the Kuroshio region during late winter: evidence of a southward spawning migration[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2019, 150: 103053. [百度学术]
SASSA C, KAWAGUCHI K, OOZEKI Y, et al. Distribution patterns of larval myctophid fishes in the transition region of the western North Pacific[J]. Marine Biology, 2004, 144(3): 417-428. [百度学术]
黄慧娴, 李建华, 麻秋云, 等. 浙江南部近海银姑鱼的年龄与生长[J]. 上海海洋大学学报, 2022, 31(3): 739-748. [百度学术]
HUANG H X, LI J H, MA Q Y, et al. Age and growth of Pennahia argentata in the offshore waters of southern Zhejiang[J]. Journal of Shanghai Ocean University, 2022, 31(3): 739-748. [百度学术]
HOSSEINI-SHEKARABI S P, VALINASSAB T, BYSTYDZIEŃSKA Z, et al. Age and growth of Benthosema pterotum (Alcock, 1890) (Myctophidae) in the Oman Sea[J]. Journal of Applied Ichthyology, 2015, 31(1): 51-56. [百度学术]
REAL E, BERNAL A, OLIVAR M P, et al. Growth patterns of the dominant lanternfish Ceratoscopelus maderensis(Lowe, 1939) from the western Mediterranean[C]//Proceedings of the5th International Otolith Symposium.Mallorca,2014. [百度学术]
CLARKE T A. Some aspects of the ecology of lanternfishes(Myctophidae) in the Pacific Ocean near Hawaii[J]. Fishery Bulletin, 1973, 71(2): 401-434. [百度学术]
GARTNER JR J V, HOPKINS T L, BAIRD R C, et al. The lanternfishes(Pisces: Myctophidae) of the eastern Gulf of Mexico[J]. Fishery Bulletin, 1987, 85(1): 81-98. [百度学术]
LINKOWSKI T B, RADTKE R L, LENZ P H. Otolith microstructure, age and growth of two species of Ceratoscopelus (Oosteichthyes: Myctophidae) from the eastern North Atlantic[J]. Journal of Experimental Marine Biology and Ecology, 1993, 167(2): 237-260. [百度学术]
付菲雨, 韩霈武, 方舟, 等. 西北太平洋春、冬季浮游动物优势种水平分布与影响因子的关系[J]. 大连海洋大学学报, 2022, 37(3): 489-496. [百度学术]
FU F Y, HAN P W, FANG Z, et al. Distribution and relationship with influential factors of dominant zooplankton species in the Northwest Pacific Ocean in spring and winter[J]. Journal of Dalian Ocean University, 2022, 37(3): 489-496. [百度学术]
韩霈武, 王岩, 方舟, 等. 北太平洋柔鱼不同群体耳石日增量对海洋环境的响应研究[J]. 海洋学报, 2022, 44(1): 101-112. [百度学术]
HAN P W, WANG Y, FANG Z, et al. Response of daily increment of statolith of neon flying squid (Ommastrephes bartramii) for different cohorts to marine environment in the North Pacific[J]. Haiyang Xuebao, 2022, 44(1): 101-112. [百度学术]