基于sdmTMB的大西洋剑鱼延绳钓渔业CPUE标准化
作者:
中图分类号:

S932

基金项目:

国家自然科学基金(32373132)


CPUE standardisation in the Atlantic swordfish longline fishery based on sdmTMB
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了提高评估结果的可靠性并支持可持续管理,在进行种群资源评估前,评估单位捕捞努力量渔获量(Catch per unit effort,CPUE)标准化方法的稳健性是必要的。渔业资源评估需要长期且连续的工作,其精确性对于管理决策和物种保护至关重要。基于1995—2022年间大西洋西班牙延绳钓船队的数据进行分析,利用sdmTMB方法对大西洋剑鱼(Xiphias gladius)渔业的CPUE进行标准化,同时利用Mohn's ρ方法进行回溯性分析,验证13个不同时间序列数据(A~M)的稳健性。结果显示,不同时间序列的标准化CPUE的结果差异较小,回溯性分析进一步确认了其一致性。研究表明,sdmTMB方法对大西洋剑鱼进行CPUE标准化具有较高的稳健性,能够准确反映该种群的相对资源丰度。本研究可为可靠的资源评估及科学的渔业管理决策提供有力的支持。

    Abstract:

    In order to improve the reliability of assessment results and support sustainable management, evaluating the robustness of methods for standardizing catch per unit effort (CPUE) prior to stock resource assessment is necessary.Fishery stock assessments require long-term and continuous work, and their accuracy is critical for management decisions and species conservation.In this study, we analysed data from the Spanish longline fleet in the Atlantic Ocean between 1995 and 2022 to standardize CPUE in the Atlantic swordfish fishery using the sdmTMB method, and a retrospective analysis using Mohn's ρ method was conducted to validate the robustnessof 13 different time series of data (A-M). The results demonstrated minor variations in the standardized CPUE outcomes across different time series. The retrospective analysis further validated the consistency of the standardized CPUE outcomes.The study concluded that the sdmTMB method for standardized CPUE of Atlantic swordfish exhibited high stability and can accurately reflect the relative resource abundance of this stock.This study provides substantial support for reliable resource assessment and scientific fisheries management decisions.

    参考文献
    [1] JIANG J T, ZHU J F, GENG Z. Stock assessment for Indian Ocean swordfish (Xiphias gladius) with JABBA and JABBA-Select models[J]. Journal of Shanghai Ocean University, 2022, 31(3):677-690.江俊涛,朱江峰,耿喆.应用JABBA和JABBA-Select模型评估印度洋剑鱼资源[J].上海海洋大学学报, 2022, 31(3):677-690.
    [2] ZHAO R X, MIAO S C. Outline of swordfishes in the world[J]. Modern Fisheries Information, 2006, 21(11):13-16.赵荣兴,缪圣赐.世界剑鱼类的基本概况[J].现代渔业信息, 2006, 21(11):13-16.
    [3] METHOT JR R D. External review of ICCAT Atlantic Swordfish Stock Assessment[J]. Collective Volume of Scientific Papers ICCAT, 2017, 74(3):968-974.
    [4] NIE Q Y, HUANG S L. Study on the trend of tuna fishery management on high seas[J]. Journal of Shanghai Ocean University, 2011, 20(4):587-593.聂启义,黄硕琳.公海金枪鱼渔业管理趋势研究[J].上海海洋大学学报, 2011, 20(4):587-593.
    [5] PARKER D, KIKUCHI E, MOURATO B L. Assessment of the South Atlantic Swordfish (Xiphias Gladius) stock using JABBA[J]. Collective Volume of Scientific Papers ICCAT, 2022, 79(2):608-639.
    [6] WINKER H, KIMOTO A, MOURATO B L, et al. Development of Bayesian state-space surplus production model JABBA for assessing the Mediterranean swordfish (Xiphias gladius) stock[J]. ICCAT Collective Volumes of Scientific Papers, 2020, 77(3):508-536.
    [7] SCHIRRIPA M J, HORDYK A. Migrating the North Atlantic swordfish stock assessment model to an updated version of stock synthesis with analysis of the current minimum size regulation[J]. Collective Volume of Scientific Papers ICCAT, 2020, 77(3):654-668.
    [8] SCHIRRIPA M. Current status of the northern swordfish (Xiphias gladius) stock in the Atlantic Ocean 2022:post-decisional stock assessement model[J]. Collective Volume of Scientific Papers ICCAT, 2022, 79(2):715-748.
    [9] HONKALEHTO T, RESSLER P H, TOWLER R H, et al. Using acoustic data from fishing vessels to estimate walleye pollock (Theragra chalcogramma) abundance in the eastern Bering Sea[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(7):1231-1242.
    [10] HUBERT W A, FABRIZIO M C. Relative abundance and catch per unit effort[M]//GUY C S, BROWN M L. Analysis and Interpretation of Freshwater Fisheries Data. Bethesda:American Fisheries Society, 2007:279-325.
    [11] BISHOP J. Standardizing fishery-dependent catch and effort data in complex fisheries with technology change[J]. Reviews in Fish Biology and Fisheries, 2006, 16(1):21-38.
    [12] TAO Y J, FENG B, YI M R, et al. A novel approach to unit standardization of CPUE for multiple types of fishing gear based on fishing port sampling surveys[J]. Progress in Fishery Sciences, 2019, 40(2):15-24.陶雅晋,冯波,易木荣,等.基于渔港抽样调查不同捕捞方式CPUE单位标准化新方法[J].渔业科学进展, 2019, 40(2):15-24.
    [13] CAMPBELL R A. Constructing stock abundance indices from catch and effort data:some nuts and bolts[J]. Fisheries Research, 2015, 161:109-130.
    [14] BIGELOW K A, BOGGS C H, HE X. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery[J]. Fisheries Oceanography, 1999, 8(3):178-198.
    [15] THORSON J T, MAUNDER M N, PUNT E. The development of spatio-temporal models of fishery catch-per-unit-effort data to derive indices of relative abundance[J]. Fisheries Research, 2020, 230:105611.
    [16] THORSON J T, PINSKY M L, WARD E J. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity[J]. Methods in Ecology and Evolution, 2016, 7(8):990-1002.
    [17] ICCAT. T2CE subset for PS FAD/FSC onf ETRO fishery from 1991 to 2021[EB/OL].(2023-01-31). https://iccat.int/en/accesingdb.html.
    [18] LIMING S, LIUXIONG X. Preliminary analysis of the biological characteristics of swordfish (Xiphias gladius) sampled from the Chinese tuna longlining fleet in the central Atlantic ocean[J]. Collective Volume of Scientific Papers ICCAT, 2004, 56(3):940-946.
    [19] AROCHA F, LEE D W. Maturity at size, reproductive seasonality, spawning frequency, fecundity and sex ratio in swordfish from the Northwest Atlantic[J]. Collective Volume of Scientific Papers-International Commission for the Conservation of Atlantic Tunas, 1996, 452:350-357.
    [20] AMORIM A, ARFELLI C. Reproducción del pez espada (Xiphias gladius, L. 1758) enelsudeste y sur del Brazil[J]. Collective Volume of Scientific Papers ICCAT, 1979, 624-626.
    [21] SMITH B L, LU C P, GARCÍA-CORTÉS B, et al. Multilocus Bayesian estimates of intra-oceanic genetic differentiation, connectivity, and admixture in Atlantic swordfish (Xiphias gladius L.)[J]. PLoS One, 2015, 10(6):e0127979.
    [22] NEILSON J D, PAUL S D, SMITH S C. Stock structure of swordfish (Xiphias gladius) in the Atlantic:a review of the non-genetic evidence[J]. Collective Volume of Scientific Papers ICCAT, 2007, 61:25-60.
    [23] SHARP G D, CSIRKE J, GARCIA S. Modelling fisheries:what was the question[C]//Proceedings of the Expert Consultations to Examine Changes in Abundance and Species Composition of Neritic Fisheries Resources.San Jose:1983:568-595.
    [24] GOODYEAR C P, SCHIRRIPA M, FORRESTAL F. Longline data simulation:a paradigm for improving CPUE standardization[J]. Collective Volume of Scientific Papers ICCAT, 2017, 74(2):379-390.
    [25] PALLARÉS P, SCOTT G, NEILSON J, et al. Report of the 2006 Atlantic swordfish stock assessment session[C/OL].(2006-09-04)[2024-06-22] . https://www.iccat.int/Documents/Meetings/Docs/SCI-040% 20EN.pdf.
    [26] TAKAHASHI M, OKAMURA H, YOKAWA K, et al. Swimming behaviour and migration of a swordfish recorded by an archival tag[J]. Marine and Freshwater Research, 2003, 54(4):527-534.
    [27] HIJMANS R J, VAN ETTEN J, SUMNER M, et al. Raster:geographic data analysis and modeling[EB/OL].(2024-10-02). https://cran.r-project.org/web/packages/raster/raster.pdf.
    [28] DING C, HE X F. K-means clustering via principal component analysis[C]//Proceedings of the Twenty-first International Conference on Machine Learning. Banff, Alberta:ACM Press, 2004:29.
    [29] HARTIGAN J A, WONG M A. Algorithm AS 136:A K-means clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1):100-108.
    [30] QI J P, YU Y W, WANG L H, et al. K*-means:an effective and efficient k-means clustering algorithm[C]//2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom). Atlanta:IEEE, 2016:242-249.
    [31] JOLLIFFE I T. Principal component analysis and factor analysis[M]//JOLLIFFE I T. Principal Component Analysis.New York:Springer, 1986:115-128.
    [32] PAUKERT C P, WITTIG T A. Applications of multivariate statistical methods in fisheries[J]. Fisheries Magazine, 2002, 27(9):16-22.
    [33] JANŽEKOVIČ F, NOVAK T. PCA-a powerful method for analyze ecological niches[M]//SANGUANSAT P. Principal Component Analysis-Multidisciplinary Applications. InTech, 2012.
    [34] FAN X M, CUI X S, TANG F H, et al. Research on the prediction model of spatial distribution of Sthenoteuthis oualaniensis in the open sen Arabian Sea based on PCA-GAM[J]. Journal of Fisheries of China, 2022, 46(12):2340-2348.范秀梅,崔雪森,唐峰华,等.基于PCA-GAM的阿拉伯海公海鸢乌贼资源量空间分布预测模型研究[J].水产学报, 2022, 46(12):2340-2348.
    [35] ANDERSON S C, WARD E J, ENGLISH P A, et al. sdmTMB:an R package for fast, flexible, and user-friendly generalized linear mixed effects models with spatial and spatiotemporal random fields[EB/OL].(2022-03-27)[2024-10-27] . http://biorxiv.org/lookup/doi/10.1101/2022.03.24.485545.
    [36] THORSON J T, ADAMS G, HOLSMAN K. Spatio-temporal models of intermediate complexity for ecosystem assessments:A new tool for spatial fisheries management[J]. Fish and Fisheries, 2019, 20(6):1083-1099.
    [37] CORREA G M, KAPLAN D M, GRANDE M, et al. Standardized catch per unit effort of yellowfin tuna in the Atlantic Ocean for the European purse seine fleet operating on floating objects[J].Collective Volume of Scientific Papers ICCAT, 2024, 81(2):1-26.
    [38] HEBERT N E, SAMEOTO J A, KEITH D M, et al. Comparing spatiotemporal species distribution models:a case study of a Scotian Shelf sea cucumber (Cucumaria frondosa)[J]. Ecosphere, 2024, 15(4):e4822.
    [39] CHIARINI M, GUICCIARDI S, ANGELINI S, et al. Accounting for environmental and fishery management factors when standardizing CPUE data from a scientific survey:a case study for Nephrops norvegicus in the Pomo Pits area (Central Adriatic Sea)[J]. PLoS One, 2022, 17(7):e0270703.
    [40] MOHN R. The retrospective problem in sequential population analysis:an investigation using cod fishery and simulated data[J]. ICES Journal of Marine Science, 1999, 56(4):473-488.
    [41] KELL L T, SHARMA R, KITAKADO T, et al. Validation of stock assessment methods:is it me or my model talking?[J]. ICES Journal of Marine Science, 2021, 78(6):2244-2255.
    [42] HASHIMOTO M, NISHIJIMA S, YUKAMI R, et al. Spatiotemporal dynamics of the Pacific chub mackerel revealed by standardized abundance indices[J]. Fisheries Research, 2019, 219:105315.
    [43] MOHN P, WOHLFARTH E P. The Curie temperature of the ferromagnetic transition metals and their compounds[J]. Journal of Physics F:Metal Physics, 1987, 17(12):2421.
    [44] LIU Y L, GE J W, LI Y Y, et al. Correlations between the volume of dominant periphytic algae species and the water quality parameters in GufuRiver[J]. China Environmental Science, 2015, 35(7):2182-2191.刘奕伶,葛继稳,李艳元,等.古夫河着生藻类优势种体积与水质因子的相关性研究[J].中国环境科学, 2015, 35(7):2182-2191.
    [45] FORRESTAL F C, SCHIRRIPA M, GOODYEAR C P, et al. Testing robustness of CPUE standardization and inclusion of environmental variables with simulated longline catch datasets[J]. Fisheries Research, 2019, 210:1-13.
    [46] YSEBAERT T, HERMAN P M J. Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment[J]. Marine Ecology Progress Series, 2002, 244:105-124.
    [47] NIXON S W. Physical energy inputs and the comparative ecology of lake and marine ecosystems[J]. Limnology and Oceanography, 1988, 33(2/4):1005-1025.
    [48] HOYLE S D, CAMPBELL R A, DUCHARME-BARTH N D, et al. Catch per unit effort modelling for stock assessment:a summary of good practices[J]. Fisheries Research, 2024, 269:106860.
    [49] NEILSON J, AROCHA F, CASS-CALAY S, et al. The recovery of Atlantic swordfish:the comparative roles of the regional fisheries management organization and species biology[J]. Reviews in Fisheries Science, 2013, 21(2):59-97.
    [50] SINCLAIR A, GASCON D, O'BOYLE R, et al. Consistency of some northwest Atlantic groundfish stock assessments[J]. NAFO Scientific Council Studies, 1991, 16:59-77.
    [51] HOYLE S, LANGLEY A, HAMPTON J. Stock assessment of albacore tuna in the South Pacific Ocean[C]//4th Meeting of the Scientific Committee of the Western and Central Pacific Fisheries Commission. Port Moresby, Papua New Guinea. 2008:11-22.
    [52] LABELLE M, HAMPTON J. Stock assessment of albacore tuna in the South Pacific Ocean[EB/OL]. 2003[2024-07-12] . http://www.spc.int/DigitalLibrary/Doc/FAME/Meetings/SCTB/16/ALB_1.pdf.
    [53] LIU R Y. Progress of marine biodiversity studies in China seas[J]. Biodiversity Science, 2011, 19(6):614-626.刘瑞玉.中国海物种多样性研究进展[J].生物多样性, 2011, 19(6):614-626.
    相似文献
    引证文献
引用本文

万发如意,林泓羽,张帆.基于sdmTMB的大西洋剑鱼延绳钓渔业CPUE标准化[J].上海海洋大学学报,2025,34(2):422-433.
WAN Faruyi, LIN Hongyu, ZHANG Fan. CPUE standardisation in the Atlantic swordfish longline fishery based on sdmTMB[J]. Journal of Shanghai Ocean University,2025,34(2):422-433.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-22
  • 最后修改日期:2025-01-13
  • 录用日期:2025-01-14
  • 在线发布日期: 2025-03-13
文章二维码