基于深度学习的金枪鱼延绳钓渔获图像识别技术分析
作者:
中图分类号:

S977

基金项目:

上海市高校特聘教授“东方学者”岗位跟踪计划项目(GZ2022011);农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1002)


Analysis of deep learning-based tuna longline catch image recognition technique
Author:
  • XIA Chao

    XIA Chao

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xinjun

    CHEN Xinjun

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;Key Laboratory of Sustainable Utilization of Oceanic Fisheries, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Bilin

    LIU Bilin

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China;Key Laboratory of Sustainable Utilization of Oceanic Fisheries, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • KONG Xianghong

    KONG Xianghong

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YE Xuchang

    YE Xuchang

    College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China;National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了实现金枪鱼延绳钓渔获物的高效识别和分类,改善渔业资源监测的准确性,本研究探索了基于卷积神经网络的鱼类图像识别方法。采用上海海洋大学“淞航”号在中西太平洋公海调查中捕获的3种经济性鱼类及10种兼捕渔获物的图像数据,运用单发多箱探测器(Single shot multibox detector,SSD)卷积神经网络进行图像分类识别。通过将局部鱼类图像与整体图片数据集进行比较分析,优化训练数据集,以提升模型的分类性能。结果表明:改进后的鱼类图像数据集在SSD模型上的分类准确率达91.6%,相较于原始数据集提高了6.2%。利用优化后的数据集,SSD模型能够显著提高金枪鱼延绳钓渔获物的识别准确性,具备更好的稳定性和适应性。本研究为基于卷积神经网络的渔业资源监测提供了有效的技术路径,尤其在提升金枪鱼延绳钓渔获物自动分类识别精度方面展现了广泛的应用潜力,对于促进可持续渔业管理和海洋生态保护具有重要意义。

    Abstract:

    In order to achieve efficient identification and classification of tuna longline catches and to improve the accuracy of fishery resources monitoring, this study explores a fish image recognition method based on convolutional neural network. The experiments were conducted using image data of three economic fish species and ten bycatch species caught by the Songhang of Shanghai Ocean University during the high seas survey in the western and central Pacific Ocean, and a convolutional neural network (CNN) based on a single shot multiBox detector (SSD) was used to classify and recognise the images. The training dataset is optimised by comparing and analysing the local fish images with the overall image dataset to improve the classification performance of the model. The experimental results show that the classification accuracy of the improved fish image dataset on the SSD model reaches 91.6%, which is a 6.2% improvement compared to the original dataset. The study shows that using the optimised dataset, the SSD model can significantly improve the recognition accuracy of tuna longline catches with better stability and adaptability. This study provides an effective technical path for fishery resource monitoring based on convolutional neural networks, especially in improving the automatic classification and identification accuracy of tuna longline catches, which is of great significance for promoting sustainable fishery management and marine ecological protection.

    参考文献
    [1] LI Y, DAI X J, ZHU J F, et al. Species composition and diversity of catches by tuna longline gear from the western and central pacific ocean[J]. Transactions of Oceanology and Limnology, 2011(2):52-58.李勇,戴小杰,朱江峰,等.中西太平洋金枪鱼延绳钓渔获组成及其多样性分析[J].海洋湖沼通报, 2011(2):52-58.
    [2] LUAN S H, DAI X J, TIAN S Q, et al. Vertical distribution of main species captured by tuna longline fishery in the Western and Central Pacific[J]. Marine Fisheries, 2015, 37(6):501-509.栾松鹤,戴小杰,田思泉,等.中西太平洋金枪鱼延绳钓主要渔获物垂直结构的初步研究[J].海洋渔业, 2015, 37(6):501-509.
    [3] WANG X, WANG Y X, LIU W J, et al. Catch composition and species diversity of pelagic longline fishing in the tropical Western and Central Pacific Ocean[J]. Journal of Fishery Sciences of China, 2022, 29(5):732-743.王啸,王佚兮,刘文俊,等.热带中西太平洋金枪鱼延绳钓渔获物组成及其多样性[J].中国水产科学, 2022, 29(5):732-743.
    [4] LE M L. Study on the management of tuna-like fisheries II:regional management organisations of tuna fisheries and new trends in their management[J]. Journal of Fishery Sciences of China, 2008, 15(5):26-29.乐美龙.金枪鱼类渔业管理问题的研究之二:金枪鱼渔业区域性管理组织和其管理新趋势[J].中国水产科学, 2008, 15(5):26-29.
    [5] ALSMADI M K S, OMAR K B, NOAH S A, et al. Fish recognition based on the combination between robust feature selection, image segmentation and geometrical parameter techniques using Artificial Neural Network and Decision Tree[J]. International Journal of Computer Science and Information Security, 2009, 6(2):215-221.
    [6] OU L G, WANG B Y, LIU B L, et al. Automatic measurement of morphological indexes of three Thunnus species based on computer vision[J]. Haiyang Xuebao, 2021, 43(11):105-115.欧利国,王冰妍,刘必林,等.基于计算机视觉的3种金枪鱼属鱼类形态指标自动测量研究[J].海洋学报, 2021, 43(11):105-115.
    [7] LIU Y Q, LI J,SONG L M,et al. Tuna catch real-time detection by fusing channel pruning with ByteTrack light weight network[J]. Journal of Shanghai Ocean University,2023,32(5):1080-1089.刘雨青,李杰,宋利明,等.融合通道剪枝与ByteTrack的轻量化金枪鱼渔获数量实时检测[J].上海海洋大学学报,2023,32(5):1080-1089.
    [8] TANG Y H, ZHANG Z P, LIN S, et al. Review and prospect of fish recognition and related techniques based on deep learning[J]. Marine Fisheries, 2024, 46(2):246-256.汤永华,张志鹏,林森,等.基于深度学习的鱼类识别相关技术研究现状及展望[J].海洋渔业, 2024, 46(2):246-256.
    [9] RUM S N M, NAWAWI F A Z. FishDeTec:a fish identification application using image recognition approach[J]. International Journal of Advanced Computer Science and Applications, 2021, 12(3):102-106.
    [10] ROBILLARD A J, TRIZNA M G, RUIZ‐TAFUR M, et al. Application of a deep learning image classifier for identification of Amazonian fishes[J]. Ecology and Evolution, 2023, 13(5):e9987.
    [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands:Springer, 2016:21-37.
    [12] ZHANG K Z, LI Y W, LIU B, et al. Research on hyperparameter tuning strategy based on VGG16 network[J]. Science and Technology&Innovation, 2021(22):10-13.张铠臻,李艳武,刘博,等.基于VGG16网络的超参数调整策略的研究[J].科技与创新, 2021(22):10-13.
    [13] KINGMA D P, BA J. Adam:a method for stochastic optimization[J]. CoRR, 2014, abs/1412.6980.
    [14] SMITH L N. No more pesky learning rate guessing games[J]. arXiv:1506.01186v2, 2015.
    [15] LEE J, SCHOENHOLZ S S, PENNINGTON J, et al. Finite versus infinite neural networks:an empirical study[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc., 2020:15156-15172.
    [16] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014:2155-2162.
    [17] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
    [18] ZHAO Z Q, ZHENG P, XU S T, et al. Object detection with deep learning:a review[J]. IEEE Transactions on Neural Networksand Learning Systems, 2019, 30(11):3212-3232.
    [19] SARRAF A, AZHDARI M, SARRAF S. A comprehensive review of deep learning architectures for computer vision applications[J]. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 2021, 77(1):1-29.
    [20] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
    [21] SPAMPINATO C, GIORDANO D, DI SALVO R, et al. Automatic fish classification for underwater species behavior understanding[C]//Proceedings of the First ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams. New York:Association for Computing Machinery, 2010:45-50.
    [22] LEKUNBERRI X, RUIZ J, QUINCOCES I, et al. Identification and measurement of tropical tuna species in purse seiner catches using computer vision and deep learning[J]. Ecological Informatics, 2022, 67:101495.
    [23] CARUANA R, LAWRENCE S, LEE GILES C. Overfitting in neural nets:backpropagation, conjugate gradient, and early stopping[C]//Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2000:402-408.
    [24] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, MA:MIT press, 2016.
    [25] ALBEAHDILI H M, HAN T, ISLAM N E. Hybrid algorithm for the optimization of training convolutional neural network[J]. International Journal of Advanced Computer Science and Applications, 2015, 6(10):79-85.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏超,陈新军,刘必林,孔祥洪,叶旭昌.基于深度学习的金枪鱼延绳钓渔获图像识别技术分析[J].上海海洋大学学报,2025,34(2):307-319.
XIA Chao, CHEN Xinjun, LIU Bilin, KONG Xianghong, YE Xuchang. Analysis of deep learning-based tuna longline catch image recognition technique[J]. Journal of Shanghai Ocean University,2025,34(2):307-319.

复制
分享
文章指标
  • 点击次数:41
  • 下载次数: 91
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2024-06-28
  • 最后修改日期:2024-11-28
  • 录用日期:2024-12-03
  • 在线发布日期: 2025-03-13
文章二维码