黑潮-亲潮交汇区中上层渔获量变动对涡旋的响应
作者:
中图分类号:

S932

基金项目:

国家自然科学基金(41976174,41606196);农业农村部全球渔业资源调查监测评估(公海渔业资源综合科学调查)专项(D-8025-23-1002)


Effects of eddies on catch in mid-pelagic species in the Kuroshio-Oyashio confluence region
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    海洋中尺度过程对渔场空间变动的影响是渔业资源评估的重要内容。为了阐明黑潮-亲潮交汇区(145°E~165°E和35°N~45°N)渔场资源丰度对中尺度涡的响应关系,利用上海海洋大学“淞航”号远洋综合调查船2021—2023年6—8月西北太平洋调查航次中上层拖网渔获产量和卫星高度计数据,研究了渔获密度与环境因子和涡旋的关系。结果显示,海水温度和叶绿素a质量浓度与渔场渔获密度分布在空间上显著相关,二者主导中上层渔场资源丰度,40°N以北海域平均渔获产量较高,40°N以南渔获产量偏低。气旋涡1~2倍半径内叶绿素a质量浓度正异常显著,反气旋涡叶绿素a质量浓度东北部正异常,其余方向均减少;涡旋2倍半径范围内,鱼群更偏向于气旋涡南部和反气旋北部聚集。气旋涡虽然是营养性涡旋,但其伴随的上升流导致水温过低,不利于鱼群聚集。黑潮-亲潮交汇区海洋生物倾向于在气旋涡南部和反气旋涡北部聚集。本研究可为西北太平洋短期的渔情预报和渔场重心预测提供科学依据,而黑潮流轴的年际动态差异引起的渔场变动仍需进一步研究。

    Abstract:

    The effect of marine mesoscale processes on spatial variation of fisheries is an important part of fishery resources assessment.In order to clarify the response relationship between fishery resource abundance in the Kuroshio-Oyashio confluence region (145°E-165°E, 35°N-45°N) and mesoscale eddies, this study utilized data from mid-pelagic trawl catches and satellite altimetry collected during research cruises in the Northwest Pacific from June to August 2021-2023 by the "Songhang" of Shanghai Ocean University research vessel. The study investigated the relationship between catch density and environmental factors as well as eddies.The results indicate a significant spatial correlation between sea surface temperature, chlorophyll-a mass concentration, and the distribution of fishing density in the fishing grounds. These factors predominantly influence the resource abundance of middle and pelagic fishery. The average fish catch yield is higher in the sea area north of 40°N compared to those south of it. Within 1-2 times the radius of cyclonic eddies, there is a notably positive abnormality in chlorophyll-a mass concentration. Conversely, in anticyclonic eddies, there is a positive abnormality in chlorophyll-a mass concentration in the northeastern part and reduced mass concentrations elsewhere.Within a radius of two times the eddy, fish aggregation was favored to the south of the cyclonic eddy and to the north of the anticyclone. Although the cyclonic eddies are nutrient eddies, their accompanying upwelling leads to low water temperatures, which are not favorable for fish aggregation. Marine organisms in the Kuroshio-Oyashio confluence region tend to aggregate in the southern part of the cyclonic eddy and the northern part of the anticyclonic eddy.This study can provide a scientific basis for short-term fishery forecasting and prediction of the center of gravity of the fishery in the Northwest Pacific Ocean, while the fishery changes caused by the inter-annual dynamic difference of the Kuroshio Current axis still need to be further investigated.

    参考文献
    [1] CHELTON D B, SCHLAX M G, SAMELSONR M. Global observations of nonlinear mesoscale eddies[J].Progress in Oceanography,2011, 91(2):167-216.
    [2] XIU P, CHAI F, SHI L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research:Oceans, 2010, 115(C3):C03012.
    [3] ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6194):322-324.
    [4] FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8):608-612.
    [5] FU L F,HU W Y,ZHANG C L,et al. Reconstruction experiment of temperature and salinity vertical structure of Ommastrephes bartramii fishing ground in Kuroshio-Oyashio confluence region[J]. Journal of Shanghai Ocean University,2024,33(4):960-973.傅利福,胡婉盈,张春玲,等.黑潮-亲潮交汇区柔鱼渔场温盐垂直结构反演实验[J].上海海洋大学学报,2024,33(4):960-973.
    [6] HE Q Y, ZHAN H G, CAI S Q, et al. Eddy effects on surface chlorophyll in the northern South China Sea:mechanism investigation and temporal variability analysis[J]. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2016, 112:25-36.
    [7] HSU A C, BOUSTANY A M, ROBERTS J J, et al. Tuna and swordfishcatch in the U.S. northwest Atlantic longline fishery in relation to mesoscale eddies[J]. Fisheries Oceanography,2015, 24(6):508-520.
    [8] ZHANG Y C. The effects of mesoscale eddies on the abundance and distribution of neon flying squid in the Northwest Pacific Ocean[D]. Shanghai:Shanghai Ocean University, 2023.张聿琛.西北太平洋柔鱼渔场对中尺度涡的响应研究[D].上海:上海海洋大学, 2023.
    [9] JIN P C, YU W, WU X C, et al. Analysis of the spatial and temporal distribution of eddies off Peru and their relationship with the abundance of jumbo flying squid, Dosidicus gigas[J]. Journal of Fishery Sciences of China, 2023, 30(6):753-764.金鹏超,余为,武孝慈,等.秘鲁外海涡旋的时空分布及其与茎柔鱼资源丰度的关系分析[J].中国水产科学, 2023, 30(6):753-764.
    [10] DURÁN GÓMEZ G S, NAGAI T, YOKAWAK. Mesoscale warm-core eddies drive interannual modulations of swordfish catch in the Kuroshio Extension System[J]. Frontiersin Marine Science, 2020, 7:680.
    [11] XING Q W, YU H Q, WANG H, et al. Mesoscale eddies modulate the dynamics of human fishing activities in the global midlatitudeocean[J]. Fish and Fisheries, 2023, 24(4):527-543.
    [12] WANG Y Z, YUAN W W. Changes of demersal trawl fishery resources in northern South China Sea as revealed by demersal trawling[J]. South China Fisheries Science, 2008, 4(2):26-33.王跃中,袁蔚文.南海北部底拖网渔业资源的数量变动[J].南方水产, 2008, 4(2):26-33.
    [13] NENCIOLI F, DONG C M, DICKEY T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3):564-579.
    [14] DONG C M, JIANG X L, XU G J, et al. Automated eddy detection using geometric approach, eddy datasets and their application[J]. Advances in Marine Science, 2017, 35(4):439-453.董昌明,蒋星亮,徐广珺,等.海洋涡旋自动探测几何方法、涡旋数据库及其应用[J].海洋科学进展, 2017, 35(4):439-453.
    [15] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15):L15606.
    [16] ZHOU K B, BENITEZ-NELSON C R, HUANG J E, et al. Cyclonic eddies modulate temporal and spatial decoupling of particulate carbon, nitrogen, and biogenic silica export in the North Pacific Subtropical Gyre[J]. Limnology and Oceanography, 2021, 66(9):3508-3522.
    [17] MIAO Q L, ZHOU J X, DONG Y F. An analysis on sea wind stress features of South China Sea[J].Tropic Oceanology, 1993, 12(1):64-68.缪启龙,周家翔,董亚非.南海海面风应力特征分析[J].热带海洋, 1993, 12(1):64-68.
    [18] LIU C Y. Study on quality and applications of reconstructed remote sensing chlorophyll a data using DINEOF in the South China Sea[D]. Shanghai:Shanghai Ocean University, 2023.刘超洋. DINEOF重构南海遥感叶绿素a数据质量及应用研究[D].上海:上海海洋大学, 2023.
    [19] HU D, CHEN X, ZHAO Y L, et al. Statistical characteristics of mesoscale eddies in the two western boundary current extension regions[J]. Haiyang Xuebao, 2018, 40(6):15-28.胡冬,陈希,赵艳玲,等.两个西边界流延伸体区域中尺度涡统计特征分析[J].海洋学报, 2018, 40(6):15-28.
    [20] WANG Y M, CHEN X J, CHEN P, et al. Variation trend and influencing factors of catch in mid-pelagic species of Kuroshio and Oyashio ecosystems[J]. Marine Fisheries, 2022, 44(2):164-177.王雅萌,陈新军,陈芃,等.黑潮和亲潮生态系统中上层渔获量变动趋势及影响因素分析[J].海洋渔业, 2022, 44(2):164-177.
    [21] TAKASUKA A, OOZEKI Y, AOKI I. Optimal growth temperature hypothesis:why do anchovy flourish and sardine collapse or vice versa under the same ocean regime?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64(5):768-776.
    [22] YU W, CHEN X J, YI Q, et al. A review of interaction between neon flying squid (Ommastrephes bartramii) and oceanographic variability in the North Pacific Ocean[J]. Journal of Ocean University of China, 2015, 14(4):739-748.
    [23] CHEN X J, ZHAO X H, CHEN Y. Influence of El Niño/La Niña on the western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean[J]. ICES Journal of Marine Science, 2007, 64(6):1152-1160.
    [24] GAUBE P, MCGILLICUDDY D J, CHELTON D B, et al. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll[J]. Journal of Geophysical Research:Oceans, 2014, 119(12):8195-8220.
    [25] LU Y H,CHENG L Q,ZHANG J,et al. Analysis of the three dimensional structure of a typical dipole in the Kuroshio extension based on shipboard observation[J]. Journal of Shanghai Ocean University,2024,33(4):1005-1019.卢宇辉,程灵巧,张俊,等.基于船舶观测的黑潮延伸体典型涡对的三维结构分析[J].上海海洋大学学报,2024,33(4):1005-1019.
    [26] MARTIN A P, RICHARDS K J. Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy[J]. DeepSea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 48(4/5):757-773.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

苏日昇,魏永亮,唐泽艳,庞邓连,张春玲.黑潮-亲潮交汇区中上层渔获量变动对涡旋的响应[J].上海海洋大学学报,2025,34(2):382-393.
SU Risheng, WEI Yongliang, TANG Zeyan, PANG Denglian, ZHANG Chunling. Effects of eddies on catch in mid-pelagic species in the Kuroshio-Oyashio confluence region[J]. Journal of Shanghai Ocean University,2025,34(2):382-393.

复制
分享
文章指标
  • 点击次数:22
  • 下载次数: 68
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2024-04-26
  • 最后修改日期:2024-05-31
  • 录用日期:2024-06-03
  • 在线发布日期: 2025-03-13
文章二维码