3种鲌亚科鱼类对不同禁捕策略的响应
CSTR:
作者:
中图分类号:

S937

基金项目:

国家自然科学基金(32002396); 中国科学院青年创新促进会项目(2022344)


Response of three cultrinae fishes to different fishing ban strategies
Author:
Fund Project:

National Natural Science Foundation of China (32002396); Youth Innovation Promotion Association CAS (2022344)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为阐明不同湖泊禁捕策略对3种鲌类的种群动态与生态位重叠的影响,本研究选取全年禁捕湖泊西凉湖与季节性禁捕湖泊斧头湖为研究地点,翘嘴鲌(Culter alburnus)、达氏鲌(Culter dabryi)和红鳍原鲌(Cultrichthys erythropterus)为研究对象,分析鱼类单位捕捞努力生物量、单位捕捞努力质量、全长、体质量与肥满度指数等种群动力参数;采用稳定同位素技术分析鲌类的食物来源及贡献率,比较不同禁捕策略湖泊中的3种鲌类的时空生态位宽度、营养生态位宽度及重叠指数。结果表明:全年禁捕湖泊中的3种鲌类的单位捕捞努力生物量显著高于季节性禁捕湖泊,且全长分布范围比季节性禁捕湖泊更广;季节性禁捕湖泊中,3种鲌类的时空生态位显著重叠;全年禁渔湖泊中,3种鲌类具有更广的营养生态位宽度。研究结果将为长江流域重点水域的禁捕制度的完善和渔业资源的持续利用提供科学依据。

    Abstract:

    In order to elucidate the effects of fishing ban strategies in different lakes on population dynamics and niche overlap of three cultrinae fishes, Xiliang Lake, a complete fishing ban strategy lake, and Futou Lake, a seasonal fishing ban strategy lake, were selected as the study sites. Three cultrinae fishes Culter alburnus, Culter dabryi and Cultrichthys erythropterus were studied. The dynamic parameters of fish population such as quantity per unit effort, biomass per unit effort, total length, body weight and relative fatness were analyzed. The food sources and contribution rates of three cultrinae fishes were analyzed using stable isotope technique, and the spatio-temporal niche breadth, trophic niche breadth and overlap indices of three cultrinae fishes in lakes with different fishing ban strategies were compared. The results showed as follows: The biomass per unit effort of three cultrinae fishes in the complete fishing ban strategy lake was significantly higher than that of the seasonal fishing ban strategy lake, and their total length distribution range was wider than that of the seasonal fishing ban strategy lake;In the seasonal fishing ban strategy lake, the temporal-spatial niche of three cultrinae fishes overlapped significantly; In the lake that complete fishing ban strategy, three species of cultrinae had wider trophic niche breadth. The results provide scientific basis for the improvement of the fishing ban strategies and the sustainable utilization of fishery resources in the key waters of the Yangtze River basin.

    参考文献
    [1] FAO.The state of world fisheries and aquaculture 2022[R].Rome:FAO, 2022.
    [2] ANDERSON C N K, HSIEH C H, SANDIN S A, et al. Why fishing magnifies fluctuations in fish abundance[J]. Nature, 2008, 452(7189):835-839.
    [3] ZHOU S J, SMITH A D M, PUNT A E, et al. Ecosystem-based fisheries management requires a change to the selective fishing philosophy[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2010, 107(21):9485-9489.
    [4] LOKRANTZ J, NYSTRÖM M, NORSTRÖM A V, et al. Impacts of artisanal fishing on key functional groups and the potential vulnerability of coral reefs[J]. Environmental Conservation, 2009, 36(4):327-337.
    [5] PET-SOEDE C, VAN DENSEN W L T, PET J S, et al. Impact of Indonesian coral reef fisheries on fish community structure and the resultant catch composition[J]. Fisheries Research, 2001, 51(1):35-51.
    [6] CAMPBELL S J, MUKMININ A, KARTAWIJAYA T, et al. Changes in a coral reef fishery along a gradient of fishing pressure in an Indonesian marine protected area[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2014, 24(1):92-103.
    [7] 陈作志, 邱永松, 贾晓平, 等. 捕捞对北部湾海洋生态系统的影响[J]. 应用生态学报, 2008, 19(7):1604-1610. CHEN Z Z, QIU Y S, JIA X P, et al. Effects of fishing on the marine ecosystem of Beibu Gulf[J]. Chinese Journal of Applied Ecology, 2008, 19(7):1604-1610.
    [8] 刘其根, 沈建忠, 陈马康, 等. 天然经济鱼类小型化问题的研究进展[J]. 上海水产大学学报, 2005, 14(1):79-83. LIU Q G, SHEN J Z, CHEN M K, et al. Advances of the study on the miniaturization of natural economical fish resources[J]. Journal of Shanghai Fisheries University, 2005, 14(1):79-83.
    [9] 梁振林, 闫伟, 孙鹏, 等. 刺网选择性对鱼类表型性状的选择作用研究[J]. 海洋与湖沼, 2012, 43(2):329-334. LIANG Z L, YAN W, SUN P, et al. A study on the impact of gillnet on the phenotypic traits of fish population[J]. Oceanologiaet Limnologia Sinica, 2012, 43(2):329-334.
    [10] MARSHALL D J, BODE M, MANGEL M, et al. Reproductive hyperallometry and managing the world's fisheries[J]. Proceedings of the National Academy of Sciencesof the United States of America, 2021, 118(34):e2100695118.
    [11] VAN WIJK S J, TAYLOR M I, CREER S, et al. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation[J]. Frontiers in Ecology and the Environment, 2013, 11(4):181-187.
    [12] 李忠炉, 金显仕, 单秀娟, 等. 小黄鱼体长-体质量关系和肥满度的年际变化[J]. 中国水产科学, 2011, 18(3):602-610. LI Z L, JIN X S, SHAN X J, et al. Inter-annual changes on body weight-length relationship and relative fatness of small yellow croaker (Larimichthys polyactis)[J]. Journal of Fishery Sciences of China, 2011, 18(3):602-610.
    [13] NALLATHAMBI M, JAYAKUMAR N, ARUMUGAM U, et al. Length-weight relationships of six tropical estuarine fish species from Pulicat lagoon, India[J]. Journal of Applied Ichthyology, 2020, 36(1):125-127.
    [14] HUTCHINSON G E. Homage to Santa Rosalia or why are there so many kinds of animals?[J]. The American Naturalist, 1959, 93(870):145-159.
    [15] LEA J S E, HUMPHRIES N E, BORTOLUZZI J, et al. At the turn of the tide:space use and habitat partitioning in two sympatric shark species is driven by tidal phase[J]. Frontiers in Marine Science, 2020, 7:624.
    [16] PAULY D, CHRISTENSEN V, DALSGAARD J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352):860-863.
    [17] CADDY J F, CSIRKE J, GARCIA S M, et al. How pervasive is "fishing down marine food webs"?[J]. Science, 1998, 282(5393):1383-1383.
    [18] MATLEY J K, HEUPEL M R, FISK A T, et al. Measuring niche overlap between co-occurring Plectropomus spp. Using acoustic telemetry and stable isotopes[J]. Marine and Freshwater Research, 2017, 68(8):1468-1478.
    [19] 陈亚东, 任泷, 徐跑, 等. 昆承湖优势种鱼类时空-营养生态位[J]. 生态学报, 2023, 43(4):1655-1663. CHEN Y D, REN L, XU P, et al. Spatio-temporal and trophic niche of dominant fish species in Kuncheng Lake[J]. Acta Ecologica Sinica, 2023, 43(4):1655-1663.
    [20] ROCHET M J, BENOÎT E. Fishing destabilizes the biomass flow in the marine size spectrum[J]. Proceedings of the Royal Society B:Biological Sciences, 2012, 279(1727):284-292.
    [21] PEREIRA T J, MANIQUE J, QUINTELLA B R, et al. Changes in fish assemblage structure after implementation of Marine Protected Areas in the south western coast of Portugal[J]. Ocean & Coastal Management, 2017, 135:103-112.
    [22] RUSS G R, ALCALA A C. Do marine reserves export adult fish biomass? Evidence from Apo Island, Central Philippines[J]. Marine Ecology Progress Series, 1996, 132:1-9.
    [23] WANG H J, WANG P Z, XU C, et al. Can the "10-year fishing ban" rescue biodiversity of the Yangtze River?[J]. The Innovation, 2022, 3(3):100235.
    [24] 黄艳飞, 段国旗, 彭林平. 翘嘴鲌的资源现状和生物学特征综述[J]. 安徽农业科学, 2019, 47(19):10-13. HUANG Y F, DUAN G Q, PENG L P. Reviews on the resource status and biological characteristics of Cluteralburnus[J]. Journal of Anhui Agricultural Sciences, 2019, 47(19):10-13.
    [25] 刘良国, 王文彬, 杨春英, 等. 洞庭湖水系资江干流鱼类资源现状调查[J]. 南方水产科学, 2014, 10(2):1-10. LIU L G, WANG W B, YANG C Y, et al. Survey on status of fish resources in mainstream of Zijiang River of Dongting Lake water system[J]. South China Fisheries Science, 2014, 10(2):1-10.
    [26] JONES R E, PETRELL R J, PAULY D. Using modified length-weight relationships to assess the condition of fish[J]. Aquacultural Engineering, 1999, 20(4):261-276.
    [27] BOECKLEN W J, YARNES C T, COOK B A, et al. On the use of stable isotopes in trophic ecology[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42:411-440.
    [28] GRALL J, LE LOC'H F, GUYONNET B, et al. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed[J]. Journal of Experimental Marine Biology and Ecology, 2006, 338(1):1-15.
    [29] SHANNON C E, WEAVER W. The mathematical theory of communication[M]. Urbana:The University of Illinois Press, 1949.
    [30] MARSHALL S, ELLIOTT M. A comparison of univariate and multivariate numerical and graphical techniques for determining inter-and intraspecific feeding relationships in estuarine fish[J]. Journal of Fish Biology, 1997, 51(3):526-545.
    [31] PIANKA E R. The structure of lizard communities[J]. Annual Review of Ecology and Systematics, 1973, 4:53-74.
    [32] KREBS C J. Ecological methodology[M]. New York:Harper & Row Publishers, 1998.
    [33] MAY R M. Some notes on estimating the competition matrix[J]. Ecology, 1975, 56(3):737-741.
    [34] LAYMAN C A, ARRINGTON D A, MONTAÑA C G, et al. Can stable isotope ratios provide for community-wide measures of trophic structure?[J]. Ecology, 2007, 88(1):42-48.
    [35] JACKSON A L, INGER R, PARNELL A C, et al. Comparing isotopic niche widths among and within communities:SIBER-Stable Isotope Bayesian Ellipses in R[J]. Journal of Animal Ecology, 2011, 80(3):595-602.
    [36] SWANSON H K, LYSY M, POWER M, et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap[J]. Ecology, 2015, 96(2):318-324.
    [37] 朱立新, 刘金殿, 梁振林. 一种稳健的贝叶斯方法在威海近海白姑鱼体长与体重关系研究中的应用[J]. 海洋湖沼通报, 2017(1):109-121. ZHU L X, LIU J D, LIANG Z L. Application of a robust Bayesian method in studying on the weight-length relationship of silver croaker Pennahia argentata inhabiting the coastal water of Weihai[J].Transactions of Oceanology and Limnology, 2017(1):109-121.
    [38] 戴强, 戴建洪, 李成, 等. 关于肥满度指数的讨论[J]. 应用与环境生物学报, 2006, 12(5):715-718. DAI Q, DAI J H, LI C, et al. Discussion on relative fatness[J]. Chinese Journal of Applied & Environmental Biology, 2006, 12(5):715-718.
    [39] HALPERN B S, WARNER R R. Marine reserves have rapid and lasting effects[J]. Ecology Letters, 2002, 5(3):361-366.
    [40] GALAL N, ORMOND R F G, HASSAN O. Effect of a network of no-take reserves in increasing catch per unit effort and stocks of exploited reef fish at Nabq, South Sinai, Egypt[J]. Marine and Freshwater Research, 2002, 53(2):199-205.
    [41] SHEARS N T, USMAR N R. Response of reef fish to partial and no-take protection at Mayor Island (Tuhua)[M]. Wellington:Science & Technical Publishing, 2006.
    [42] WILLIAMS I D, WALSH W J, MIYASAKA A, et al. Effects of rotational closure on coral reef fishes in Waikiki-Diamond Head Fishery Management Area, Oahu, Hawaii[J]. Marine Ecology Progress Series, 2006, 310:139-149.
    [43] 肖善势, 张爱菊, 刘金殿, 等. 千峡湖三种肉食性鱼类肠道微生物群落结构分析[J]. 水产学杂志, 2022, 35(3):73-79. XIAO S S, ZHANG A J, LIU J D, et al. Analysis on intestine microbial community structure of three carnivorous fishes in QianxiaLake, China[J]. Chinese Journal of Fisheries, 2022, 35(3):73-79.
    [44] 徐瑛, 祝孔豪, 郭钰伦, 等. 高营养级捕食者在浅水湖泊沿岸带与敞水区能量耦合的维持作用[J]. 水生生物学报, 2022, 46(3):403-409. XU Y, ZHU K H, GUO Y L, et al.The role of upper trophic level predators in maintaining the pelagic and littoral habitat energy coupling in shallow lakes[J]. Acta Hydrobiologica Sinica, 2022, 46(3):403-409.
    [45] GUO Z Q, LIU J S, LEK S, et al. Coexisting invasive gobies reveal no evidence for temporal and trophic niche differentiation in the sublittoral habitat of Lake Erhai, China[J]. Ecology of Freshwater Fish, 2017, 26(1):42-52.
    [46] DE MÉRONA B, RANKIN-DE-MÉRONA J. Food resource partitioning in a fish community of the central Amazon floodplain[J]. Neotropical Ichthyology, 2004, 2(2):75-84.
    [47] JONES J I, WALDRON S. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes[J]. Freshwater Biology, 2003, 48(8):1396-1407.
    [48] POUILLY M, BARRERA S, ROSALES C. Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia)[J]. Journal of Fish Biology, 2006, 68(1):137-156.
    [49] ADITE A, WINEMILLER K O. Trophic ecology and ecomorphology of fish assemblages in coastal lakes of Benin, West Africa[J]. Écoscience, 1997, 4(1):6-23.
    [50] WOLFF L L, CARNIATTO N, HAHN N S. Longitudinal use of feeding resources and distribution of fish trophic guilds in a coastal Atlantic stream, southern Brazil[J]. Neotropical Ichthyology, 2013, 11(2):375-386.
    [51] LOCHAM A G, KAUNDA-ARARA B, WAKIBIA J G, et al. Diet and niche breadth variation in the marbled parrotfish, Leptoscarus vaigiensis, among coral reef sites in Kenya[J]. African Journal of Ecology, 2015, 53(4):560-571.
    [52] 王亚龙, 李昊成, 何勇凤, 等. 长湖5种鲌摄食器官形态学的比较[J]. 淡水渔业, 2016, 46(6):26-32. WANG Y L, LI H C, HE Y F, et al. Morphological variations of feeding organs of five species of Culter from Changhu Lake[J]. Freshwater Fisheries, 2016, 46(6):26-32.
    [53] ROMANUK T N, HAYWARD A, HUTCHINGS J A. Trophic level scales positively with body size in fishes[J]. Global Ecology and Biogeography, 2011, 20(2):231-240.
    [54] KEPPELER F W, MONTAÑA C G, WINEMILLER K O. The relationship between trophic level and body size in fishes depends on functional traits[J]. Ecological Monographs, 2020, 90(4):e01415.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李昊轩,邓文博,郭茜茜,陶昆,冯凯,苑晶,刘家寿,成永旭,王齐东.3种鲌亚科鱼类对不同禁捕策略的响应[J].上海海洋大学学报,2023,32(4):841-851.
LI Haoxuan, DENG Wenbo, GUO Qianqian, TAO Kun, FENG Kai, YUAN Jing, LIU Jiashou, CHENG Yongxu, WANG Qidong. Response of three cultrinae fishes to different fishing ban strategies[J]. Journal of Shanghai Ocean University,2023,32(4):841-851.

复制
分享
文章指标
  • 点击次数:110
  • 下载次数: 458
  • HTML阅读次数: 712
  • 引用次数: 0
历史
  • 收稿日期:2023-02-06
  • 最后修改日期:2023-05-11
  • 录用日期:2023-05-12
  • 在线发布日期: 2023-08-04
  • 出版日期: 2023-07-20
文章二维码