氟苯尼考对铜绿微囊藻生长和生理特征的影响
CSTR:
作者:
中图分类号:

Q949.22

基金项目:

陕西省科技厅一般项目(2018NY-109);陕西省大学生科创项目(3201710712053);陕西省水利厅项目(2018slkj-20)


Effects of florfenicol on the growth and physiology of cyanobacteria (Microcystis aeruginosa)
Author:
Fund Project:

the Key Research and Development Project of Shaanxi Province (No. 2018NY-109, No. 2018NY-005) ;Students Research Fund in Shaanxi(3201710712053);Hydraulic Science and Technology of Shaanxi Province, China(2018slkj-20)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    试验以5个不同质量浓度氟苯尼考处理铜绿微囊藻,测定其生长及生理响应。结果表明,氟苯尼考质量浓度低于0.1 mg/L时促进铜绿微囊藻的叶绿素a合成,而对藻胆蛋白含量和多糖分泌无直接影响;质量浓度高于1.0 mg/L时则抑制其叶绿素a合成,而藻胆蛋白和多糖含量均随处理质量浓度升高而增加。不同质量浓度的氟苯尼考处理对铜绿微囊藻光合作用相关基因rbcL以及光系统Ⅱ反应中心蛋白编码基因psaB和psbD1均有一定程度的影响。rbcL和psaB基因的表达量在试验前3天均有下调,后期随质量浓度明显上调;psbD1基因在1.0 mg/L组的表达量明显高于其他组。表明水中氟苯尼考质量浓度在1.0 mg/L以上有促进铜绿微囊藻的生长趋势。

    Abstract:

    Due to the improper use, antibiotic residues became one of the highly persistent pollutants and have damaged the water ecosystem. In this paper, the growth characteristics, physiological condition and photosynthesis related genes of Microcystis aeruginosa were tested at five different mass concentrations of florfenicol. The results showed that in lower mass concentrations group (lower than 0.1 mg/L), the contents of chlorophyll a significantly increased, while no obvious effect on the phycobiliprotein content and the secretion of polysaccharide. In higher mass concentration group (higher than 1.0 mg/L), the synthesis of cyanobacteria chlorophyll a was inhibited, but the contents of phycobiliprotein and polysaccharides secreted increased. The photosynthesis related genes rbcL, psaB and psbD1 of Microcystis aeruginosa were changed with florfenicol treatment groups. The expression levels of rbcL and psaB genes were down-regulated in first three days, and up-regulated after 5th and 7th day exposure. The expression level of the psbD1 gene in the 0.1 mg/L group was not significantly different with the control group at 3-5 days after treatment, while the 1.0 mg/L group was significantly up-regulated than that of other groups. The results showed that 1.0 mg/L florfenicol in the water had a good impact on growth of Microcystis aeruginosa.

    参考文献
    [1] 王冰, 孙成, 胡冠九. 环境中抗生素残留潜在风险及其研究进展[J]. 环境科学与技术, 2007, 30(3):108-111. WANG B, SUN C, HU G J. Residue antibiotics in environment:potential risks and relevant studies[J]. Environmental Science & Technology, 2007, 30(3):108-111.
    [2] CHEN J Q, GUO R X. Access the toxic effect of the antibiotic cefradine and its UV light degradation products on two freshwater algae[J]. Journal of Hazardous Materials, 2012, 209-210:520-523.
    [3] CRANE M, WATTS C, BOUCARD T. Chronic aquatic environmental risks from exposure to human pharmaceuticals[J]. Science of the Total Environment, 2006, 367(1):23-41.
    [4] CODD G A, MORRISON L F, METCALF J S. Cyano-bacterial toxins:risk management for health protection[J]. Toxicology and Applied Pharmacology, 2005, 203(3):264-272.
    [5] SMITH J L, BOYER G L, ZIMBA P V. A review of cyanobacterial odorous and bioactive metabolites:impacts and management alternatives in aquaculture[J]. Aquaculture, 2008, 280(1/4):5-20.
    [6] WILSON A E, SARNELLE O, NEILAN B A, et al. Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes:implications for harmful algal blooms[J]. Applied and Environmental Microbiology, 2005, 71(10):6126-6133.
    [7] 陈建中, 刘志礼, 李晓明, 等. 温度、pH和氮、磷含量对铜绿微囊藻(Microcystis aeruginosa)生长的影响[J]. 海洋与湖沼, 2010, 41(5):714-718. CHEN J Z, LIU Z L, LI X M, et al. Effects of temperature, pH, nitrogen and phosphorus on growth of Microcystis aeruginosa[J]. Oceanologia et Limnologia Sinica, 2010, 41(5):714-718.
    [8] 陈长平, 高亚辉, 林鹏. 盐度和pH对底栖硅藻胞外多聚物的影响[J]. 海洋学报, 2006, 28(5):123-129. CHEN C P, GAO Y H, LIN P. Production of extracellular polymeric substances (EPS) by benthic diatom:effect of salinity and pH[J]. Acta Oceanologica Sinica, 2006, 28(5):123-129.
    [9] PERRON M C, JUNEAU P. Effect of endocrine disrupters on photosystem Ⅱ energy fluxes of green algae and cyanobacteria[J]. Environmental Research, 2011, 111(4):520-529.
    [10] ZENG J, YANG L Y, WANG W X. Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa[J]. Aquature Toxicololgy, 2009, 93(1):1-10.
    [11] PAPATSIROS V, TZIKA E, ATHANASIOU L, et al. In vivo effectiveness of injectable antibiotics on the recovery of acute Actinobacillus pleuropneumoniae-infected pigs[J]. Microbial Drug Resistance, 2019, 25(4):603-610.
    [12] SHIRY N, SOLTANIAN S, SHOMALI T, et al. Immunomodulatory effects of orally administrated florfenicol in rainbow trout (Oncorhynchus mykiss) following experimental challenge with streptococcosis/lactococcosis[J]. International Immunopharmacology, 2019, 73:236-245.
    [13] YÉVENES K, POKRANT E, PÉREZ F, et al. Assessment of three antimicrobial residue concentrations in broiler chicken droppings as a potential risk factor for public health and environment[J]. International Journal of Environmental Research and Public Health, 2019, 16(1):24.
    [14] DU Y X, WANG J, ZHU F Y, et al. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa):the impact and recovery capability[J]. Ecotoxicology and Environmental Safety, 2018, 160:84-93.
    [15] 张红霞, 宫相忠, 高伟, 等. 四种抗生素对共培养的萱藻丝状体和膨胀色球藻的影响[J]. 水产学报, 2018, 42(12):1906-1915. ZHANG H X, GONG X Z, GAO W, et al. Inhibitory effect of four antibiotics on Chroococcus turgidus co-cultured to the filaments of Scytosiphon lomentaria[J]. Journal of Fisheries of China, 2018, 42(12):1906-1915.
    [16] 官奕宏, 李红卫, 吕谋, 等. 诺氟沙星和四环素对铜绿微囊藻的毒性研究[J]. 四川环境, 2015, 34(5):25-30. GUAN Y H, LI H W, LV M, et al. Effects of norfloxacin and tetracycline on Microcystis aeruginosa[J]. Sichuan Environment, 2015, 34(5):25-30.
    [17] 国家环境保护总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2006. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods[M]. Beijing:China Environmental Science Press, 2006.
    [18] PADGETT M P, KROGMANN D W. Large scale preparation of pure phycobiliproteins[J]. Photosynthesis Research, 1987, 11(3):225-235.
    [19] YANG Z, KONG F X, SHI X L, et al. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing[J]. Journal of Phycology, 2008, 44(3):716-720.
    [20] 杨林莎, 李玉贤. 李明丽, 等. 苯酚-硫酸比色法测定百合多糖的含量[J]. 中国中医药信息杂志, 2004, 11(8):704-705. YANG L S, LI Y X, LI M L, et al. Determination for the content of polysaccharides in the lilium brownii by phenol-vitriolic colorimetry[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2004, 11(8):704-705.
    [21] 高胜玲, 黄亚新, 卢亚萍, 等. 微囊藻群体总RNA提取方法的比较[J]. 湖泊科学, 2018, 30(2):441-448. GAO S L, HUANG Y X, LU Y P, et al. Comparison of RNA extraction methods from Microcystis colonies[J]. Journal of Lake Sciences, 2018, 30(2):441-448.
    [22] 周旭东. 四环素类、磺胺类抗生素对铜绿微囊藻和小球衣藻的影响研究[D]. 杨凌:西北农林科技大学, 2017. ZHOU X D. Effects of tetracyclines and sulfonamides on Microcystis aeruginosa and Chlamydomonas microsphaera[D]. Yangling:Northwest A & F University, 2017.
    [23] 辛文克. 大萍及其碱类提取物对铜绿微囊藻生长的抑制作用研究[D]. 哈尔滨:哈尔滨工业大学, 2013. XIN W K. The study on inhibition effects of Microcystis aeruginosa growth by Pistia stratiotes and its alkali extracts[D]. Harbin:Harbin Institute of Technology, 2013.
    [24] 张晓晗, 万甜, 程文, 等. 喹诺酮类和磺胺类抗生素对绿藻生长的影响[J]. 水资源与水工程学报, 2018, 29(4):115-120. ZHANG X H, WAN T, CHENG W, et al. Effects of quinolones and sulfonamides on the growth of green algae[J]. Journal of Water Resources and Water Engineering, 2018, 29(4):115-120.
    [25] 刘菲菲, 冯慕华, 尚丽霞, 等. 温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响[J]. 湖泊科学, 2014, 26(5):780-788. LIU F F, FENG M H, SHANG L X, et al. Effects of temperature on the growth and generation of extracellular organic matter of Microcystis aeruginosa and Anabaena sp.[J]. Journal of Lake Sciences, 2014, 26(5):780-788.
    [26] 余澍琼. 过氧化氢对铜绿微囊藻生长抑制及作用机理研究[D]. 杭州:浙江工业大学, 2011. YU S Q. The mechanism and inhibitory effect of hydrogen peroxide on the growth of Microcystis aeruginosa[D]. Hangzhou:Zhejiang University of Technology, 2011.
    [27] ZHANG C, LING F, YI Y L, et al. Algicidal activity and potential mechanisms of ginkgolic acids isolated from Ginkgo biloba exocarp on Microcystis aeruginosa[J]. Journal of Applied Phycology, 2014, 26(1):323-332.
    [28] 张超. 丹参抑制铜绿微囊藻活性成分及机理研究[D]. 杨凌:西北农林科技大学, 2014. ZHANG C. Study on active constitutions and mechanisms of Salvia miltiorrhiza bung against Microcystis aeruginosa[D]. Yangling:Northwest A&F University, 2014.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐宏洲,杨宸,彭俊,刘海侠.氟苯尼考对铜绿微囊藻生长和生理特征的影响[J].上海海洋大学学报,2021,30(1):120-128.
XU Hongzhou, YANG Chen, PENG Jun, LIU Haixia. Effects of florfenicol on the growth and physiology of cyanobacteria (Microcystis aeruginosa)[J]. Journal of Shanghai Ocean University,2021,30(1):120-128.

复制
分享
文章指标
  • 点击次数:2751
  • 下载次数: 1677
  • HTML阅读次数: 241
  • 引用次数: 0
历史
  • 收稿日期:2019-09-02
  • 最后修改日期:2020-04-07
  • 录用日期:2020-04-13
  • 在线发布日期: 2021-01-22
文章二维码